Automatic Generation of Network Function
Accelerators Using Component-Based Synthesis

Francisco Pereirava Gongalo Matos @

Hugo Sadok & Daehyeok Kim &

Ruben Martinsa# Justine Sherry«# Fernando M.V.Ramos® Luis Pedrosa @

W INESC-ID, Instituto Superior Técnico, University of Lisbon

Abstract

Designing networked systems that take best advantage of
heterogeneous dataplanes — e.g., dividing packet processing
across both a PISA switch and an x86 CPU - can improve
performance, efficiency, and resource consumption. How-
ever, programming for multiple hardware targets remains
challenging because developers must learn platform-specific
languages and skills. While some ‘write-once, run-anywhere’
compilers exist, they are unable to consider a range of im-
plementation options to tune the NF to meet performance
objectives. In this short paper, we explore preliminary ideas
towards a compiler that explores a large search space of differ-
ent mappings of functionality to hardware. This exploration
can be tuned for a programmer-specified objective, such as
minimizing memory consumption or maximizing network
throughput. Our initial prototype, SYNAPSE, is based on a
methodology called component-based synthesis and supports
deployments across x86 and Tofino platforms. Relative to
a baseline compiler which only generates one deployment
decision, SYNAPSE uncovers thousands of deployment op-
tions - including a deployment which reduces the amount
of controller traffic by an order of magnitude, and another
deployment which halves memory usage.

Keywords

In-network compute, Network function virtualization, Pro-
gramming abstraction

1 Introduction

In the pursuit of upgradeability, customizability, and inno-
vation, the networking community has embraced program-
mable dataplanes to implement network functions (NFs), in-
cluding advanced features like deep packet inspection, fil-
tering, address translation and WAN optimization. Which

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
SOSR 22, October 19-20, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9892-3/22/10.
https://doi.org/10.1145/3563647.3563656

&l Carnegie Mellon University =% Microsoft

programmable hardware is best suited to implement these ca-
pabilities remains an active area of debate: will the winner be
Protocol Independent Switch Architecture (PISA) switches [2,
3,7, 8]? Network Processing Units [20]? FPGAs [32]? Or x86
software [9, 22, 24, 25]?

The challenging truth is that all of these platforms have
their strengths. For example, while PISA switches excel at
match-action operations on packet headers [18], traditional
x86 software wins for parsing regular expressions over pay-
loads [32]. Hybrid dataplane designs [10, 23, 27, 31, 32] which
use an ensemble of platforms, each platform performing tasks
it is best suited for, are proving capable of higher throughput,
lower latency, better energy efficiency, lower cost, etc. than
single-platform approaches. For example, traditional reactive
SDN partitions the dataplane between packet forwarding (per-
formed entirely on the switch), and flow establishment (with
a controller), and some intrusion detection systems partition
the dataplane between exact match search (using a SmartNIC)
and regular expression parsing (on a CPU) [5, 32].

Unfortunately, hybrid designs are extremely challenging to
develop. Each programmable platform comes with its own pro-
gramming language (e.g., P4, Verilog, or C), hardware features
(Is there SRAM, DRAM, or both? Is there a cache hierarchy?),
and debugging challenges. Developing high-performance NFs
for any single platform is already widely considered to be chal-
lenging, and asking developers to learn an elite skillset for
multiple such platforms is a very tall order. What developers
really need is the ability to ‘write once, and run anywhere’
with code not only portable across different platforms, but
partitionable, with dataplane codepaths automatically provi-
sioned on the hardware best-suited for that task.

Groundbreaking forays into ‘write once, run anywhere’
models have shown that it is possible to build compilers and
schedulers that can correctly partition code across multiple
dataplane platforms [6, 10, 23, 27, 31]. Nonetheless, existing
approaches fall short of delivering on the core premise of
hybrid dataplanes: the ability to use each platform for what
it is best suited with regard to a particular performance or
resource objective such as latency or memory utilization, re-
spectively. Atahigh level, existing approaches focus primarily
on the problem of translation, reasoning about performance
or resource utilization only - if at all — with regard to one,

https://doi.org/10.1145/3563647.3563656

SOSR 22, October 19-20, 2022, Virtual Event, USA

CPU/Controller

CPU/Controller

Pereira et al.

CPU/Controller

;3

NAT Table
15t packet
i] e -t
H MAT Stateful 1 MAT
Y registers < 4
1 . 1 ‘
— v > »
| = |- . |

Stateful l H MAT Stateful l
registers 4 x registers
7 1 2 o 3
2 — — =

Switch data plane
(a) No offload

Switch data plane
(b) Offloading to switch MATs

Switch data plane

(c) Offloading to switch registers

Figure 1: Three NAT implementations: a) to save switch resources, all packets go to the controller and state is kept
in CPU memory; b) to improve throughput while avoiding limited register memory, state is kept in the switch
MAT. Only the control-plane can update the MAT, so the first packet of a flow goes to the controller. c¢) to maximize
throughput, state can be kept in registers, which can be updated from the data-plane without controller intervention.

Algorithm 1 Simplified NAT pseudo-code. ports maps flows
to public ports, and flows has the reverse mapping.

1: function procEss(pkt, port)
2 if port = WAN then
3 if flows.contains(pkt.d_port) then
4 pkt.d_ip « flows[pkt.d_port].priv_ip
5: pkt.d_port « flows[pkt.d_port].priv_port
6 forward(LAN)
7 else
8 drop()
9 else
10: flow « {pkt.s_ip, pkt.d_ip, pkt.s_port, pkt.d_port}
11 if ports.contains(flow) then
12: public_port « ports[flow]
13: else
14: public_port « allocate_port()
15: ports[flow] « public_port
16: flows[public_port] « { pkt.s_ip, pkt.s_port}
17: pkt.s_ip « PUBLIC_IP
18: pkt.s_port «— public_port
19: forward(WAN)

hard-coded objective.

In this paper, we discuss early design considerations for a
cross-platform compiler which tunes deployment of a given
network function to achieve performance or resource objec-
tives. For example, a NAT designed for maximum throughput
might store all port mappings on a switch dataplane, but a
NAT designed to conserve on-switch memory might only
store state for elephant flows on the switch dataplane, and
keep mice on an external controller. Our prototype compiler,
SYNAPSE, reasons about such trade-offs and generates fine-
tuned deployments based on component-based synthesis [13].

The key insight behind SYNAPSE is that much of the per-
formance and resource tuning done by elite developers is

invested into the implementation of common, reusable algo-
rithms and data structures. Typical developers then re-use
these algorithms and data structures, choosing implementa-
tions that best suit their performance objectives (e.g., using
a hash table with separate chaining for memory density, or
cuckoo hashing [21] to put tight bounds on lookup times).

SYNAPSE provides a library of standard abstract data types
(e.g.map, vector)and algorithms with multiple backing imple-
mentations; we broadly call these ‘components’. For example,
in software SYNAPSE might provide a cuckoo hash, a binary
search tree, and a hash table with separate chaining all to
implement map, and for PISA switches SYNAPSE might use
registers as well as a TCAM or SRAM-based tables to imple-
ment the same component. Hence, the same component can
be implemented on multiple platforms, and multiple ways
on each platform. Importantly, component implementations
can be written once by developers with platform-specific ex-
pertise, and then be reused later by developers who need not
worry about hand tuning the internals of each component.

NF developers need only focus on the control flow and net-
working logic of their application, programming against the
abstract SYNAPSE component APIs. By separating the compo-
nent implementations from NF core logic, we can use exhaus-
tive symbolic execution techniques [30] to build a sound and
complete representation of NF functionality. At compile-time,
the SYNAPSE compiler takes in this representation, a profile
of the available hardware platforms and their resources, and
a performance or resource objective to optimize for. It then
searches over the space of all possible deployments to find a
suitable mapping of components to hardware.

In comparisons relative to state-of-the-art Gallium [31],
our initial prototype can generate a deployment of a Network
Address Translator over a PISA switch and x86 controller that
matches their resource utilization and throughput. However,
because SYNAPSE can be asked to optimize for different per-
formance metrics, it is also able to find a deployment which
provides higher throughput, reducing the amount of traffic

Automatic Generation of Network Function Accelerators Using Component-Based Synthesis

h port == WAN ﬁ
F ports.contains —» allocate_port()

flows.contains
v 3 v

translate
translate

drop() v write flows[port] <€ write ports[flow]
forward(LAN) forward(WAN) translate —>» forward(WAN)
Figure 2: NAT model.
port == WAN

Table lookup (flows) @ Table lookup (ports) @

translate drop translate send to cpu
i v v
forward(WAN) allocate port
forward(LAN) v
Table write (flows) @ <& Table write (ports) @

v

translate —>» forward(WAN)

Figure 3: Switch and controller NAT logic optimized
for resource utilization. & nodes use switch tables.

to the controller by 3 orders of magnitude (at a cost of switch
memory resources), and a deployment which optimizes to
minimize switch resources, halving the amount of SRAM used
(at the cost of higher CPU load on the controller).

2 Motivation

To understand the process of offloading an NF to a network
accelerator, consider a Tofino-based programmable switch [8]
and the simplified NAT in Algorithm 1. New flows from the
LAN to the WAN interface are remapped to use a unique
external port (Line 14). All of the information needed to per-
form address translation for future packets in this flow is then
stored in two maps (for LAN to WAN traffic: Line 15; and vice-
versa: Line 16). As traffic comes back from the WAN, it either
matches a known flow and is translated/forwarded (Line 6),
or is dropped (Line 8).

There are many ways of offloading this NF to the switch,
three of which we outline in Figure 1. Each of them showcases
a specific switch resource being allocated to store the NAT’s
translation table. Figures 3 to 5 complement these by depict-
ing three distinct offloading implementations that make use
of this resource utilization flexibility to optimize for specific
goals. We call these offloading solutions execution plans. Each
execution plan’s node represents some logic implemented
either on the switch (if the node is blue) or on the controller
(in case it is red).

Each different offloading approach represents a particular
trade-off between performance and resource-usage. Figure 1a
illustrates a trivial solution that steers all packets to the con-
troller. Although the NF is no longer accelerated, it is a valid
option, for instance, if the goal is to save the switch’s resources
to be used by other applications.

Other solutions (e.g., Figures 1b and 3) would implement the
maps flows and ports as P4 tables to be kept in the Match-
Action Tables (MATs). As updating a map corresponds to

SOSR 22, October 19-20, 2022, Virtual Event, USA

Registers-based

— (1 == UYL port allocator
Table lookup (flows) @ Table lookup (ports) @ . M)
Registers write,
v v v v (flows)
translate Registers read translate Registers read
v (flows) v (ports) v send to cpu
translate
forward(LAN) v v forward(WAN) v v \
translate drop translate - pr— allocate port
v v forward()) *

forward(LAN) forward(WAN)

ﬁ Table write (ports) @

Table write (ﬂows)@g} translate

v

forward(WAN)

Figure 4: Switch and controller NAT logic optimized
for CPU load. # nodes use switch tables, £ use registers.

Registers-based

v——— LR =T port allocator
Table lookup (flows) @ Table lookup (ports) @ . M .
Registers write,
v v v v (flows)
translate Registers read translate Registers read
v (flows) v (ports) ¢ send to cpu
translate
forward(LAN) \ v forward(WAN) \/ v A\
translate drop translate o p— allocate port
forwar
v v et v
forward(LAN) forward(WAN)

ﬁTablewrite (ports) @

Table write (1I0ws)@4} translate

Table write (ports) @ +

\ forward(WAN)
Table write (flows) @

Figure 5: Switch and controller NAT logic optimized
for throughput. @ nodes use switch tables, E use
registers. Hashed nodes represent async operations.

adding a new entry to the MAT, and as MATs can be updated
from the controller only, the first packet of a flow needs to be
steered to the controller, triggering the installation of a new
flow rule in the switch. Subsequent packets can be processed
entirely in the switch data plane thereafter. This accelerated
version (we callitmin-resources)improves the performance
by keeping most traffic in the data plane, at the cost of switch
memory. This is similar to the accelerated NAT generated by
Gallium [31] that also requires CPU intervention to install
new flows in the switch.

For maximum performance, a Tofino expert would try to
maintain packet processing entirely in the switch data plane
(Figure 1c). This would require the use of data structures on
the Tofino that allow write operations by the data plane it-
self, e.g., P4 registers. These are hard to use, with restrictions
like only allowing a single read-modify-write operation per
packet, but can be used to perform write operations to state
stored on the data plane. The expert could envision many
different solutions to this problem. For instance, one solution
would be to store a limited number of flows in these regis-
ters using a simple hashing mechanism (Figure 4). As register
space fills up, flows will cause hash collisions, at which point
the new flow can be directed to the controller to populate an
overflow space in tables. As most traffic stays in the switch,
we call it the min-cpu-1load solution.

SOSR 22, October 19-20, 2022, Virtual Event, USA

Another solution would take this a step further and asyn-
chronously move flows from the limited register space to
the larger MAT tables (Figure 5), trading off some additional
CPU load for this process for higher network throughput
(max-throughput). We could even take advantage of more
exotic algorithms and data structures on the data plane al-
ready devised by previous work, such as sketches [16, 29],
bloom filters [18], or cuckoo hashes [18]. All of these, or even
some combination of them, could potentially be used to form
an even better performing offloading version of a NAT.

One key takeaway is that there is a plethora of different
ways to offload this single NF to the switch, all of them with
different trade-offs and payoffs. Although part of the chal-
lenge is planning how to partition logic and data between the
accelerator and the controller, it actually goes deeper: even
for the same partitioning one could devise different algorithms
to implement the same functionality.

While offloading NFs to network accelerators in these var-
ious manners can improve their performance and free up
computational resources on commodity hardware, it is not
trivial how to do it since it requires deep expertise and famil-
iarity with the accelerator’s idiosyncrasies. Moreover, each
time the NF implementation changes, its offloaded solution
might need to be completely restructured. Automating this
task can potentially bring all its benefits whilst taking the
labor off the shoulders of the NF developers.

State-of-the-art and SYNAPSE: Recent work tackled the
challenge of automating NF offloading by either requiring NFs
to be developed in a high-level programming language specifi-
cally designed for this purpose [6, 10], using machine learning
to infer porting strategies [23], or by partitioning acceler-
ated code (P4) into multiple P4 targets [27]. Closer to us, Gal-
lium [31] starts from an NF written as a Click module [14] and
builds a model for the NF which it then manipulates and par-
titions to try to maximize the amount of operations offloaded
to the accelerator, which for their NAT results in something
like Figures 1b and 3. This approach is akin to a compiler, trans-
forming the NF using to a set of rules to find a single solution.

SYNAPSE pushes on the state-of-the-art in three ways. First,
it uses as input NF code written in a general-purpose language
(e.g., C). As a result, the developer does not need elite skills in
different low-level languages and in-depth knowledge of the
target hardware intricacies to program the accelerated code.
Second, it leverages program synthesis that navigates the vast
space of possible offloading solutions to search for the con-
figuration that best meets the user’s goal — a vast space that
is mostly overlooked by previous systems. Within this space
would be Gallium’s solution and with the right configuration
SYNAPSE could find it, but the power of our approach is in
the reasoning about this space, rather than the ability to come
up with any one given solution. Third, our component-based

Pereira et al.

For each component the
synthesizer can choose from a
range of implementation options
on varying platforms.

fows. contains(pkt.d_por]

qable lookup (flows) Table lookup (flows) Register read (flows) send to cpu

flows.contains(pkt.d_port)

M

Register read (flows)

M

ports.contains(flow)

Register based
port allocator

Table lookup (ports) send to cpu

v v * As we commit to the
decisions made we develop
. . RS HTERE) the partial Execution Plan.
By the end we arrive at a
complete Execution Plan V

representing a complete NF

offloading solution. (TR

Figure 6: Search building the execution plans.
approach [13] separates the development of the core NF logic
from code acceleration.

3 Component-based NF Synthesis

In this section, we discuss the SYNAPSE design and the
different roles different kinds of developers take.

Development: We envision two kinds of developers: accel-
erator developers and NF developers. Accelerator developers
are platform experts. They implement reusable components
respecting the same abstract interface, like implementing a
lookup table using a P4 table for PISA switches or a hash table
for x86 CPUs, and expose them as C APIs. These components
are made available to NF developers, e.g., via open source
libraries. NF developers write C-like NF code (with some
constraints on loops and pointer arithmetic to facilitate anal-
ysis [30]) that use the components in an NF implementation.

Deploying NF Code: Using our NAT running example, Sy-
NAPSE starts from an NF implementation provided by an NF
developer (Section 2) and performs symbolic analysis [4] to ex-
tract a sound and complete representation of its functionality.
This follows the approach developed in Vigor [30], whereby
data structures and other complex library code are separated
out from the otherwise stateless NF core logic. Without the
complexity of data structures and algorithms, the NF code is
now stateless. Hence it is amenable to exhaustive symbolic ex-
ecution, resulting in a tree representing all possible code paths.
Subjecting our NAT to these techniques outputs the model
depicted in Figure 2. This tree represents NF functionality in
an abstract manner, tracking how input packets and previous
state are transformed into output packets and new state.
The next step explores ways to convert our tree of code
pathsinto a concrete execution plan (or EP, as in Figures 3 to 5)
which maps NF functionality to platform-specific functional-
ity. The search process gradually builds partial EPs by replac-
ing nodes in the functional representation with components

Automatic Generation of Network Function Accelerators Using Component-Based Synthesis

that implement the same functionality on a specific platform.

Figure 6 shows a portion of the search space that SYNAPSE
navigates when offloading the NAT to a programmable switch,
specifically using the P4 language. During this search, it de-
tects that an access to the map flows could be implemented
as either a simple table lookup, a direct register lookup, or
even a more complex mechanism that uses both tables and
registers. Another alternative is sending the packet to another
device, e.g., the software controller, another accelerator, or
even a commodity middlebox server. This allows the search
process to explore solutions that use multiple heterogeneous
accelerators that distribute functionality across the network.

Starting with the functional tree described earlier, the search
progressively tries replacing nodes one by one to emit new
EP nodes. At each step, SYNAPSE picks which tree node to
convert next, taking into account data-dependencies and read-
/write semantics, and then selects which component to swap
in, out of the many possible implementation candidates. As
the tree is explored, each partial EP is scored using a search
heuristic, guiding the search process towards finding “better”
solutions, according to some user-defined measure of good-
ness. The search is complete when all functional nodes have
been converted to EP nodes. Crucially, all complete EPs that
can result from search will be valid implementations that vary
in performance but not functionality.

Figures 3 to 5 correspond to valid EPs of Figure 2 but with
different trade-offs, all reachable via different heuristics. For
Figure 3, SYNAPSE chose to implement the port allocation
logic on the controller, whereas for Figures 4 and 5 it decided
to optimistically implement this stateful logic using regis-
ters on the switch, with the latter having additional logic
implemented to allow for asynchronous migration of data
between the registers and tables. Crucially, all these choices
were motivated by their specific heuristic.

Heuristics: In the above discussion, we did not describe how
SYNAPSE decides which of the many possible component
implementations to choose in converting the functional tree
into an EP. Deciding which component implementation to
choose at each step is the job of a heuristic. The design of
good heuristics remains an open problem for the SYNAPSE
project, but we envision pre-programming SYNAPSE with
several heuristics, and at NF deployment time an operator
simply choosing the heuristic that best meets their needs. For
example, in a datacenter with online data-intensive applica-
tions [28] and tight deadlines, an operator might choose to
run a heuristic designed to minimize latency; in a wide area
network setting with large traffic flows an operator might
prefer a heuristic which maximizes throughput.

We define heuristic as a function that given a pair of partial
EPs returns the better of the two (i.e. a comparator), for some
definition of better. For example, a simple heuristic that tries

SOSR 22, October 19-20, 2022, Virtual Event, USA

to optimize for throughput, when given both options, might
choose an implementation that does not detour traffic to the
controller over one that does. The search process uses the
heuristic to sort and decide which partial EP to make progress
on during the next iteration, as it is deemed the best candi-
date so far. That partial EP will potentially generate multiple
others, as SYNAPSE will probably find that there are multiple
ways of offloading the current component. The process then
repeats, continuously using the heuristic to guide search.
Our work developing heuristics is still at an early stage, and
so far we have explored a few simple heuristics such as mini-
mizing the number of EP nodes that run on the CPU. However,
we hypothesize that more elaborate heuristics have poten-
tials to outperform the simple heuristics we have tried. In
the examples above about minimizing latency or maximizing
throughput, we might incorporate a performance prediction
model into our heuristics. Exploring the best heuristics for
SYNAPSE across a wide range of platforms is our future work.

4 Evaluation

In this section, we conduct experiments to understand the
impact that different performance targets have on different as-
pects of the systems that SYNAPSE generates. We implement
a prototype of SYNAPSE and run it using the same running
example of a NAT described in Section 2. We implement the
NAT in C with the Vigor framework [30].

As our work on heuristics is still early stage, we manually
explore the search space. We found three distinct solutions tar-
geting different performance objectives: CPU load, resource
utilization, and throughput; with solutions illustrated in Fig-
ures 3 to 5. We refer to these solutions as min-resources,
min-cpu-load, and max-throughput respectively. We then
evaluate the performance of the different solutions by look-
ing at three different factors: the fraction of packets that the
switch sends to the controller, the CPU load on the controller,
and the switch resource utilization.

4.1 Experimental setup

Simulator: We implement a simulator that replicates the
switch functionality and the controller in software. Because
we have full control over the simulator we can retrieve fine
grained statistics about the behavior of the switch and how
it interacts with the controller. For instance, we can track the
number of times that the controller writes to the data struc-
tures inside the switch as well as the occupancy of these data
structures. Using the simulator also lets us more easily gen-
erate synthetic traffic with variable packet sizes and packet
inter-arrival times.

Time is simulated and packets are transmitted as if they
were subjected to alink rate of 100 Gbps. The simulated switch
data structures mimic the same capacities as the ones on the

SOSR 22, October 19-20, 2022, Virtual Event, USA

=== Min resources
mmmm Min CPU load
=3 Max throughput

=== Min resources
mmmm Min CPU load
= Max throughput

5 100 g 6
% 10 E % 5
g 1 3 8 4
2 10! 4 i)
= = 3
S 102 1 5
@» & 5
o 108 3 £
8 10 { £
* 105 X 0
M 10M 100M
Churn (fpm)
(a) Empirical. (b) Synthetic.

Figure 7: Fraction of traffic sent to controller under em-
pirical (a) and synthetic traffic with variable churn (b).

real switch. Moreover, the simulation uses the same hash func-
tion to calculate register indexes as on the switch, which is
crucial to detect collisions. Finally, it takes 300us to complete
write operations to the tables [31].

These simulations are, however, not meant for fine-grained
performance prediction, but for providing insights on rela-
tive performance between different offloading solutions op-
timized for different goals. We envision that operators may
use them to test different performance objectives before they
even commit to buying new hardware.

Workloads: We use two types of traffic: empirical traces
obtained from a university datacenter [1], and synthetic ones.
Both contain 42k flows in total and 117 elephant flows respon-
sible for 80% of the total volume of traffic. The packet sizes
follow a bimodal distribution in which the majority is less
than 200B or greater than 1400B. The synthetic traffic has
the same characteristics as the empirical one but modified to
achieve specific values of flow churn, which we define as the
number of different flows that replace others during a given
period. Traces with higher churn have to handle new flows
more often. We found that churn is a particularly important
metric for many network functions generated using SYNAPSE
as packets from new flows are often more costly than packets
from existing ones.

4.2 Findings

Fraction of traffic sent to the controller: Figure 7a shows
how different performance objectives impact the fraction of
packets sent to the controller. Under empirical traces, the
min-resources configuration causes the amount of traffic
sent to the controller to increase by three orders of magnitude
compared to the other configurations. This is expected as
sending more traffic to the controller allows SYNAPSE to use
fewer switch resources.

With no recirculation the Tofino processes packets at line
rate independently of packet sizes. Performance not only dete-
riorates but becomes harder to predict when packets are sent
to the controller. That motivated us to use the relative number
of packets sent to the controller as an evaluation metric. This

Pereira et al.

=== Min resources
mmmm Min CPU load
= Max throughput

=== Min resources
mmmm Min CPU load
= Max throughput

36
32
e

3 1 8 28
3 S 24
z 1 22
©] Q 16
5 g 12
©] ° 8
o o 4
0

1M 10M 100M

Churn (fpm)

(a) Empirical. (b) Synthetic.

Figure 8: Relative CPU load under empirical (a) and
synthetic traffic with variable churn (b).

metric is optimistic in the sense that it does not consider the
time it takes for a packet to be sent to the CPU and trigger a
table write operation in the switch to completion. Neverthe-
less it provides an important insight on the NF’s performance
on the switch: the more packets are sent to the controller, the
worse the performance.

We also use synthetic traces to show that the fraction of
packets sent to the controller correlates with the degree of
churn, measured in flows per minute (fpm) (Figure 7b). While
this is true for all configurations, max-throughput is the least
sensitive to churn. This is because, unlike min-resources,
which requires the first packet of every flow to be sent to the
controller,max-throughput takes advantage of registers, and
thus processes a larger fraction of traffic entirely in the switch.
Moreover, unlike min-cpu-1load, it relies on the controller to
asynchronously move data from the registers to the tables.
This decreases the number of flows that need to be sent to the
controller, which happens every time there is a collision on
the registers. The trade-off to this solution is that it increases
the load on the CPU in the common case, as we will see next.

CPUload on the controller: The CPU load on the controller
is influenced not only by the amount of traffic that it receives
butalso by the number of asynchronous operations that the ap-
plication imposes. In this context, asynchronous operations
are those that are conducted without the need to forward
traffic to the controller. For example, the max-throughput
configuration uses asynchronous operations to move flows
from registers to tables, without sending the first packet of
every flow to the controller. Instead, a digest is sent to the
controller, which eventually acts upon it and migrates the new
flow’s data from the registers to the tables. Even though this
is able to reduce the amount of traffic sent to the controller, it
still imposes load on the CPU. Figure 8a demonstrates this by
showing the relative CPU load on the controller for the three
different configurations under the empirical traces.
Surprisingly, however, when we artificially increase the
level of churn to 100M fpm using the synthetic traffic (Fig-
ure 8b), the min-cpu-load configuration starts to impose an
even larger CPUload on the controller than max-throughput.

Automatic Generation of Network Function Accelerators Using Component-Based Synthesis

Thisis due to the fact that, under such extreme churn, the regis-
ter space fills up fast and both solutions end up sending either
a digest or a full packet to the controller for every new flow.
The way max-throughput processes the digest, however, in-
duces slightly less load than how min-cpu-load processes
packets. Whereas the latter receives the packet, updates the
switch tables, and finally forwards it, the former needs only
to receive the notification (digest) and update the tables.
Switch resources: Finally, we look at the amount of switch
resources that each configuration needs. Table 1 shows the
resource utilization reported by the Tofino compiler as a per-
centage of each resource type used when targeting a 32-port
100Gbps Tofino switch (Wedge 100B-32X). It shows how Sy-
NAPSE can vastly reduce switch resource utilization when
this is set as the main performance objective (nin-resource).
Forthemin-resource configuration, SYNAPSE almost halves
the SRAM utilization, reduces Map RAM utilization by 5x and
barely uses the other switch resources when compared to the
other configurations. This is particularly useful when multi-
ple applications share the same switch. Operators may choose
to optimize a performance-critical application for throughput
and a less performance-critical one for resource utilization.

Summary: There is no “one-size fits all” solution when
designing NF accelerators. Different goals ask for different
offloading approaches, raising the development challenge.
These preliminary experiments already showcase the power
of SYNAPSE in delivering different performance objectives
from the same high-level implementation. We are currently
working on expanding the platforms that SYNAPSE supports,
implementing other more complex NFs, and developing au-
tomated (rather than hand guided) search.

5 Discussion

We have demonstrated component-based synthesis as a
promising approach to deploying ‘write-once, run anywhere’
dataplane programs for heterogeneous architectures. Our pro-
totype, SYNAPSE, uses interchangeable, abstract components
with performance- and resource-tuned implementations. Be-
fore concluding, we discuss SYNAPSE in context with related
approaches and discuss future work.
Network Synthesis: Recent work has been using synthe-
sis in the scope of traditional SDN and network configura-
tion [15, 17, 33]. This is in contrast to and complementary of
SYNAPSE, which synthesizes network functions.
Related Synthesizers: We argue that SYNAPSE’s form of
component-based synthesis [13] fits in a sweet spot of com-
plexity and abstraction. Traditional sketch-based program
synthesis approaches (e.g., [26]) explore fine-grained changes
in code, typically using a template to restrict the search space.
This poses a challenge, as the system either has to limit the

SOSR 22, October 19-20, 2022, Virtual Event, USA

Table 1: Resources used by different implementations.

Resource Type ~ Min. resources Min. CPUload Max. throughput
Hash bits 2.2% 11.1% 11.1%
Hash Dist Unit 0% 34.7% 34.7%
SRAM 16.7% 29% 29%

Map RAM 5.6% 30.2% 30.2%
TCAM 0.0% 0.0% 0.0%
VLIW 1.3% 9.6% 9.6%
Meter ALU 0% 25% 25%
Match Crossbar 3.3% 10.1% 10.1%

flexibility of potential solutions, or deal with an intractably
large search space that represents nearly all possible programs.
By using components as the key abstraction for space explo-
ration, we constrain the search space (avoiding state space
explosions), while imposing only practical restrictions on the
space of possible designs. Other NF frameworks have used
rule-based translation [19, 31], instead of synthesis. The bene-
fit of SYNAPSE relative to these approaches is that rule-based
translation only proposes one solution, while SYNAPSE can
explore different deployment options and consider trade-offs.
Partitioning: Sonata [11] also tackles the problem of parti-
tioning programs between CPUs and PISA switches, but for
network telemetry queries. SYNAPSE handles more general
NFs, requiring a more powerful approach like search.

Future Work: Any good heuristic will perform some form of
performance prediction, a task which is a research area in its
own right [12]. Our search space exploration must not only
account for predicted performance of different tasks on differ-
ent hardware platforms, but must also predict the transition
cost of transferring packets from one platform to another -
another aspect of performance we will need to model. Further,
if our predictions have errors, we will have to be careful to
understand how errors in our heuristics lead to sub-optimal
execution plans (i.e., is it the case that mild errors in heuristics
can lead to very bad execution plans? Or that very bad errors
in heuristics can still lead to fairly good execution plans?)
This task of designing heuristics will become increasingly
complex as we add more hardware platforms to SyNAPSE
beyond the PISA and x86 platforms which we already sup-
port, such as FPGAs, Network Processing Units (NPUs), or
Infrastructure/Data Processing Units (IPUs/DPUs).

Acknowledgments

We are grateful to our shepherd, Jedidiah McClurg, and
the anonymous SOSR reviewers. This work was supported by
the SyNAPSE CMU-Portugal/FCT project (CMU/TIC/0083/
2019), the uPVN FCT project (PTDC/CCI-INF/30340/2017),
INESC-ID (via UIDB/50021/2020), and the Intel/VMware 3D
FPGA Academic Research Center. F. Pereira is supported by
the FCT scholarship PRT/BD/152195/2021.

SOSR 22, October 19-20, 2022, Virtual Event, USA

References
[1] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network

[5

[9

[10

(11

[13

—

[t

flans?

]

—

—

=

—

]

—

—

—_

traffic characteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement. 267-280.
Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput. Commun. Rev. (jul
2014).

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick
McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz.
2013. Forwarding Metamorphosis: Fast Programmable Match-Action
Processing in Hardware for SDN. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM (SIGCOMM ’13).

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10,
2008, San Diego, California, USA, Proceedings, Richard Draves and
Robbert van Renesse (Eds.). USENIX Association, 209-224. http:
/[www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao Chen, Jiajun
Chen, Mingxu Xie, and Qiang Liu. 2022. Fidas: Fortifying the Cloud
via Comprehensive FPGA-Based Offloading for Intrusion Detection:
Industrial Product. In Proceedings of the 49th Annual International
Symposium on Computer Architecture (ISCA °22).

Xiang Chen, Hongyan Liu, Dong Zhang, Zili Meng, Qun Huang,
Haifeng Zhou, Chunming Wu, Xuan Liu, and Qiang Yang. 2022.
Automatic performance-optimal offloading of network functions on
programmable switches. IEEE Transactions on Cloud Computing (2022).
Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Var-
gaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse
Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall. 2017. DRMT: Disag-
gregated Programmable Switching. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17).
Intel Corporation. 2022. Intel Tofino 3. https://www.intel.com/
content/www/us/en/products/network-io/programmable-ethernet-
switch.html

ETSI. 2012. Network Functions Virtualisation - White Paper.
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou,
Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu.
2020. Lyra: A cross-platform language and compiler for data plane
programming on heterogeneous asics. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 435-450.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-driven streaming
network telemetry. In Proceedings of the 2018 conference of the ACM
special interest group on data communication. 357-371.

Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli,
Katerina Argyraki, and George Candea. 2019. Performance
Contracts for Software Network Functions. In 16th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 19). USENIX Association, Boston, MA, 517-530.
https://www.usenix.org/conference/nsdil9/presentation/iyer

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari.
2010. Oracle-Guided Component-Based Program Synthesis. In
Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1 (Cape Town, South Africa) (ICSE ’10).

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Pereira et al.

Association for Computing Machinery, New York, NY, USA, 215-224.
https://doi.org/10.1145/1806799.1806833

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. 2000. The Click modular router. ACM Transactions on
Computer Systems (TOCS) 18, 3 (2000), 263-297.

Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger
Wattenhofer, and David Maltz. 2013. ZUpdate: Updating Data Center
Networks with Zero Loss. SSIGCOMM Comput. Commun. Rev. 43, 4 (aug
2013),411-422. https://doi.org/10.1145/2534169.2486005

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In Proceedings of the 2016
ACM SIGCOMM Conference (SIGCOMM ’16).

Jedidiah McClurg, Hossein Hojjat, Pavol Cern}'l, and Nate Foster. 2015.
Efficient Synthesis of Network Updates. SIGPLAN Not. 50, 6 (jun 2015),
196-207. https://doi.org/10.1145/2813885.2737980

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. Silkroad: Making stateful layer-4 load balancing fast and
cheap using switching asics. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. 15-28.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-directed hardware design for
network performance monitoring. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. 85-98.
Netronome. 2022. Agilio LX SmartNICs. https://www.netronome.
com/products/agilio-1x/

R.Pagh and F. F. Rodler. 2004. Cuckoo hashing. Journal of Algorithms
(feb 2004). Issue 51.

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A
Framework for NFV Applications. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15).

Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srinivas
Narayana, and Ang Chen. 2021. Automated SmartNIC Offloading
Insights for Network Functions. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. 772-787.

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. 2012. Design and Implementation of a Consolidated
Middlebox Architecture. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12).

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. 2012. Making Middleboxes Someone
Else’s Problem: Network Processing as a Cloud Service. In Proceedings
of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SSIGCOMM ’12).
Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal
Ebcioglu. 2005. Programming by Sketching for Bit-Streaming Programs.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (Chicago, IL, USA) (PLDI "05).
Association for Computing Machinery, New York, NY, USA, 281-294.
https://doi.org/10.1145/1065010.1065045

Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and
Boon Thau Loo. 2021. Flightplan: Dataplane disaggregation and
placement for p4 programs. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 571-592.

Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012.
Deadline-Aware Datacenter Tcp (D2TCP). In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (Helsinki, Finland)
(SIGCOMM ’12). Association for Computing Machinery, New York, NY,

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.usenix.org/conference/nsdi19/presentation/iyer
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/2534169.2486005
https://doi.org/10.1145/2813885.2737980
https://www.netronome.com/products/agilio-lx/
https://www.netronome.com/products/agilio-lx/
https://doi.org/10.1145/1065010.1065045

—

[t

—

Automatic Generation of Network Function Accelerators Using Component-Based Synthesis

USA, 115-126. https://doi.org/10.1145/2342356.2342388

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive
and Fast Network-Wide Measurements. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18).

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis
Pedrosa, Katerina Argyraki, and George Candea. 2019. Verifying soft-
ware network functions with no verification expertise. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 275-290.
Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy. 2020.
Gallium: Automated software middlebox offloading to programmable
switches. In Proceedings of the Annual conference of the ACM Special

SOSR 22, October 19-20, 2022, Virtual Event, USA

Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 283-295.
Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and
Justine Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a
Single Server. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20).

Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten
Godfrey. 2015. Enforcing Customizable Consistency Properties in
Software-Defined Networks. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). USENIX Association, Oak-
land, CA, 73-85. https://www.usenix.org/conference/nsdil5/technical-
sessions/presentation/zhou

https://doi.org/10.1145/2342356.2342388
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/zhou
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/zhou

	Abstract
	1 Introduction
	2 Motivation
	3 Component-based NF Synthesis
	4 Evaluation
	4.1 Experimental setup
	4.2 Findings

	5 Discussion
	Acknowledgments
	References

