Enso

A Streaming Interface for NIC-Application Communication

Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S. Berger, James C. Hoe, Aurojit Panda, Justine Sherry, Ren Wang

NIC offloads

NIC offloads

Offloads operate at higher network layers

NIC offloads

Offloads operate at higher network layers

Efficient network stacks

NIC offloads

Offloads operate at higher network layers

Efficient network stacks

Often bypass the kernel and rely on batching

NIC offloads

Offloads operate at higher network layers

Efficient network stacks

Often bypass the kernel and rely on batching

This Talk:

1 Mismatch between how NICs are used and the interface that they provide

Fixing this mismatch can significantly improve performance while paving the way for higher-level offloads

Existing NICs provide a packetized interface

Existing NICs provide a packetized interface

Existing NICs provide a packetized interface

Poor cache interaction due to chaotic memory access

Poor cache interaction due to chaotic memory access

Poor cache interaction due to chaotic memory access

Chaotic Memory Access

Poor cache interaction due to chaotic memory access

DPDK echo with E810 NIC

55% Miss Ratio for the L2 Cache

Chaotic Memory Access

Overhead (PCIe bandwidth and CPU cycles) due to per-packet metadata

DPDK echo with E810 NIC Host Memory PCIe BW (Gbps) 80 Descriptor ket Buffer uffer P2 Read 60 PCIe limit 40 Goodput ıffer P3 Packet 20 Metadata Write P4 ket Buffer RD WR

Descriptor

Write

Descriptor

Ring Buffer

Up to 39% of PCIe bandwidth consumed with metadata

Overhead (PCIe bandwidth and CPU cycles) due to per-packet metadata

Similar process to transmit packets

Mismatch between how NICs are used and their interface

#1 Packetized Abstraction

#2 Poor Cache Interaction

#3 Metadata Overhead

New interface for NIC-Application Communication

Enso

New interface for NIC-Application Communication

Key Idea: Streaming abstraction

Enso

New interface for NIC-Application Communication

Key Idea: Streaming abstraction

Provide the illusion of an unbounded buffer

Provide the illusion of an unbounded buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Packetized Abstraction

Example 1: NIC with no offloads

Example 1: NIC with no offloads

Example 2: NIC that is aware of application-level messages

Example 3: NIC that implements a transport protocol

Example 3: NIC that implements a transport protocol

- 1) How to implement a streaming abstraction?
- 2 How can a streaming abstraction improve performance?

Provide the illusion of an unbounded buffer

Provide the illusion of an unbounded buffer

Ensō Pipe

Each pipe consists of a single contiguous buffer

Provide the illusion of an unbounded buffer

Each pipe consists of a single contiguous buffer

We treat this buffer as a ring buffer for data

Provide the illusion of an unbounded buffer

Each pipe consists of a single contiguous buffer

We treat this buffer as a ring buffer for data

Provide the illusion of an unbounded buffer

Each pipe consists of a single contiguous buffer

We treat this buffer as a ring buffer for data

Packetized Interface

Poor Cache Interaction

Metadata Overhead

Packetized Interface

Poor Cache Interaction

Metadata Overhead

Ensō

Packetized Interface

Metadata Overhead

Ensō

Sequential Memory Access

Packetized Interface

Metadata Overhead

Ensō

Sequential Memory Access

Reduces L1 misses by 95.9% and L2 misses by 99.5%

Packetized Interface

Poor Cache Interaction

Metadata Overhead

Ensō

Sequential Memory Access

Reduces L1 misses by 95.9% and L2 misses by 99.5%

Notifying Batches

Packetized Interface

Poor Cache Interaction

Metadata Overhead

Ensō

Sequential Memory Access

Reduces L1 misses by 95.9% and L2 misses by 99.5%

Notifying Batches

Reduces PCIe metadata traffic by 96.9%

RX Ensō Pipe

Naïve strategy: send an update for every piece of data

Naïve strategy: send an update for every piece of data

Naïve strategy: send an update for every piece of data

Problem: Per-packet overhead

Notification Pacing in Ensō

Ensō combines two techniques

1) Reactive Notifications

2 Notification Prefetching

The NIC updates its pointer in reaction to CPU pointer updates

Only sends notifications that are strictly necessary

Many other design challenges...

How to notify pointer updates efficiently?

How to deal with data that wrap around?

How to design a scalable hardware?

How to avoid copies in applications that send data back (e.g., Network Functions)?

Many other design challenges...

How to notify pointer updates efficiently?

How to deal with data that wrap around?

How to design a scalable hardware?

How to avoid copies in applications that send data back (e.g., Network Functions)?

Refer to the paper for details

Ensō Implementation

Hardware Software CPU FPGA

Ensō Implementation

Hardware

Software

CPU

FPGA

Ensō NIC
(SystemVerilog)

Ensō Implementation

Hardware

Software

FPGA

Ensō NIC
(SystemVerilog)

CPU

Kernel Module (C)

Ensō Library (C++17)

Evaluation

Ensō achieves 100 Gbps line rate (148.8 Mpps) using a single core

Ensō achieves 100 Gbps line rate (148.8 Mpps) using a single core

"Impressive results. Soundly destroys DPDK for many of the types of microbenchmark applications that are popular in the academic literature [...]" — Reviewer D

Ensō improves application throughput by up to 6x

Application	Throughput Improvement
Maglev Load Balancer [NSDI '16]	Up to 6x
Network Telemetry with NitroSketch [SIGCOMM '19]	Up to 3.5x
MICA Key-Value Store [NSDI '14]	Up to 47%
Log Monitor	Up to 95%

Reactive Notifications + Notification Prefetching improve throughput without impairing latency

Ensō achieves similar latency to the E810 NIC with DPDK, while sustaining a much greater load

Ensō outperforms the packetized interface even when copying data

Ensō is a streaming interface for NIC-Application communication

Ensō is a streaming interface for NIC-Application communication

Improves application throughput by up to 6x even with no offloads

Ensō is a streaming interface for NIC-Application communication

Improves application throughput by up to 6x even with no offloads

Allows easier and more efficient high-level offload implementations

Ensō is a streaming interface for NIC-Application communication

Improves application throughput by up to 6x even with no offloads

Allows easier and more efficient high-level offload implementations

Ensō is open source: enso.cs.cmu.edu

Contact: sadok@cmu.edu