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Abstract
The need for fairness, strong isolation, and fine-grained con-
trol over network traffic in multi-tenant cloud settings has
engendered a rich literature on packet scheduling in switches
and programmable hardware. Recent proposals for hardware
scheduling primitives (e.g., PIFO, PIEO, BMW-Tree) have
enabled run-time programmable packet schedulers, consid-
erably expanding the suite of scheduling policies that can
be applied to network traffic. However, no existing solution
can be practically deployed on modern switches and NICs
because they either do not scale to the number of elements
required by these devices or fail to deliver good throughput,
thus requiring an impractical number of replicas.

In this work, we ask: is it possible to achieve priority packet
scheduling at line-rate while supporting a large number of
flows? Our key insight is to leverage a scheduling primitive
used previously in software – called Hierarchical Find First
Set – and port this to a highly pipeline-parallel hardware de-
sign. We present the architecture and implementation of the
Bitmapped Bucket Queue (BBQ), a hardware-based integer
priority queue that supports a wide range of scheduling poli-
cies (via a PIFO-like abstraction). BBQ, for the first time,
supports hundreds of thousands of concurrent flows while
guaranteeing 100 Gbps line rate (148.8 Mpps) on FPGAs and
1 Tbps (1,488 Mpps) line rate on ASICs. We demonstrate
this by implementing BBQ on a commodity FPGA where it
is capable of supporting over 100K flows and 32K priorities
at 300 MHz, 3× the packet rate of similar hardware priority
queue designs. On ASIC, we can synthesize 100K elements
at 3.1 GHz using a 7nm process.

1 Introduction
Packet scheduling, the problem of deciding what order

and/or time network packets ought to be served or transmitted,
has long occupied a prominent position in networking litera-
ture. Prior work in this space has resulted in a rich repertoire
of packet scheduling algorithms with a variety of different
properties: fairness and starvation avoidance [9], attack re-
silience [7], burst reduction [34], optimal flow completion
time [4], etc. At the heart of many of these algorithms is a pri-
ority queue data-structure, which allows the scheduler to map
packets’ relative order (or scheduling time) to unique priori-
ties, sort them, and subsequently extract the highest-priority
item (i.e., the next packet to schedule) from the queue.

Despite these strong theoretical foundations, network
switches and NICs have historically failed to provide anything
beyond a small suite of simple scheduling algorithms [41].

The key problem is the complexity associated with implement-
ing a fast, scalable, and generic priority queue in hardware.
PIFO [41] was a foundational paper in articulating the im-
portance of priority queueing and providing a practical im-
plementation of a hardware priority queue. Yet, as we will
discuss further in §2, PIFO falls short of achieving suitable
performance for deployment either on an ASIC (as in a tra-
ditional switch) or on an FPGA (as in modern SmartNICs).
Today, line rates run at 100+ Gbps, and comprise tens or even
hundreds of thousands of concurrent flows, but PIFO can
support at most 2048 concurrent flows while guaranteeing
line-rate processing.

This performance bottleneck arises because implementing
an exact priority queue involves comparison-based sorting
a sequence of n arbitrary elements, which imposes a theo-
retical lower bound of Ω(n logn) on the required number of
comparator operations. While PIFO reduces this complexity
to O(n) by observing that priority can be determined at en-
queue time, and the spatial nature of switch or NIC hardware
allows this computation to be parallelized (i.e., by unrolling
the operations in space instead of time), spatial parallelism
only scales so far: as the number of comparator operations
increases, so does the complexity of the resulting datapath cir-
cuit, causing the maximum operating frequency of the switch
or NIC to drop dramatically. Although prior work has since
improved upon PIFO using more sophisticated parallelization
techniques [40, 47]), they are nonetheless limited in terms of
performance, scalability, or both. Moreover, many of these so-
lutions give up logical partitioning, a key feature of PIFO that
is essential for practical switch deployment. For instance, the
state-of-the-art priority queue design, BMW-Tree [47], would
require 1,056 replicas in order to support a 32× 400 Gbps
output-queued switch (§2.1.1)!

In this paper, we ask: is it possible to achieve priority
packet scheduling on NICs and switches at state-of-the-art
line rates with 100K+ flows without sacrificing accuracy or
the expressiveness that PIFO offers?

As we look to build a highly performant and scalable pri-
ority queue for hardware packet scheduling, we are inspired
by data structures with constant worst-case time complexity.
In particular, we find that integer priority queues (IPQs) are
well suited to the task: they subvert the complexity barrier
imposed by comparison-based sorting, so performance and
scalability are no longer at odds. Further, there should be no
loss in precision so long as the relative ordering of packets
can be encoded in the priority span of the IPQ.

In this work, we present the design and implementation



of the Bitmapped Bucket Queue (BBQ),1 a scalable, high-
performance IPQ for hardware packet scheduling. The data
structure underlying BBQ is a Hierarchical Find-First Set
(HFFS) queue [38, 45], which guarantees constant worst-case
time complexity for standard heap operations. While HFFS
is a well-known data structure that has found applications
in several software systems,2 our key insight is that HFFS
queueing is amenable to a highly efficient, fully-pipelined
hardware implementation. As a consequence, BBQ enables,
for the first time, packet scheduling at 100 Gbps line rate
using minimum-sized packets on a commodity FPGA-based
SmartNIC, and can be incorporated into state-of-the-art 32×
400 Gbps switches [33] with as little as 12 replicas.

Although efficient pipeline parallelism is key to BBQ’s
high performance and scalability, incorporating this paral-
lelism introduced new challenges in avoiding data hazards
(parallel reads and writes to the same data) and correctness.
As we will discuss in §4.2, hazards manifested in our design
in three ways and required careful design to disentangle par-
allel access to shared data without sacrificing performance.
Nonetheless, BBQ ultimately makes one sacrifice to correct-
ness in that it cannot support back-to-back dequeues of pack-
ets from the same flow; in §5 we show that by combining
BBQ with a tiny PIFO instance we can guarantee the perfor-
mance of BBQ with the correctness of PIFO.

The rest of this paper is organized as follows. In §2 we
provide background and discuss the challenges of incorpo-
rating a programmable scheduler into modern switches and
NICs. In §3, we provide an overview of the BBQ design,
followed by a more detailed description of the architecture in
§4, focusing on the challenges due to parallelism and hazards.
In §5, we explore an augmentation to the BBQ design that
counteracts the latency artifacts introduced by pipelining. In
§6 we evaluate BBQ, followed by a discussion on how to
incorporate the design into modern switches and NICs in §7.
We then describe the related work in §8, discuss limitations
and future work in §9, and conclude in §10.

2 Background and Motivation
More than ever, there is a need for programmable packet

scheduling in hardware. Switches have long offered a limited
set of packet scheduling algorithms and NICs are increasingly
taking over dataplane tasks traditionally performed in soft-
ware [37], including end-host packet scheduling [26, 34, 42].
In the case of switches, having a programmable packet sched-
uler could not only vastly expand the catalog of scheduling
algorithms available to network operators, but also pave the
way for faster innovation and customization [11, 41]. With
NICs, system administrators already expect to be able to cus-
tomize the packet scheduler that runs on the end host [37].

1Available at https://github.com/cmu-snap/BBQ.
2The Linux kernel uses FFS-based priority queueing for process schedul-

ing. Eiffel [38] demonstrates how HFFS queueing can be used to realize
high-performance software packet scheduling, and [45] even gives a sketch
for a hardware design.

2.1 Lack of Support for Emerging Use-Cases
PIFO [41] is a seminal work in this regard. It makes the

observation that, when considering a single node [28], all
scheduling algorithms can be expressed in how they make
two decisions: which packet to schedule next and when to
schedule it. The authors observe that for many scheduling
algorithms this behavior can be captured simply with a hard-
ware priority queue. This priority queue can be used in one
of two ways: it can implement work conserving algorithms
by sorting flows by rank, or it can implement non-working
conserving algorithms by sorting flows by scheduling time.
While PIFO was initially conceived to run on switches, it has
also been shown to be a useful primitive to schedule packets
on NICs [26, 42].

Unfortunately, existing solutions for programmable packet
scheduling in hardware fail to meet the requirements for both
state-of-the-art NICs and switches. In what follows, we elab-
orate on these two use cases, highlighting how their stringent
performance requirements are at odds with existing proposals
for programmable hardware packet schedulers.

2.1.1 Line-Rate Switches
In order to support packet scheduling without impeding

the rest of the switch’s dataplane functionality, any realis-
tic proposal for a packet scheduler ought to satisfy two key
requirements:
(A1) Match the switch’s aggregated packet rate: For
scheduling in output-queued switches, the worst-case through-
put demand corresponds to the scenario where ingress traffic
from all ports is incident on a single egress port (i.e., incast
behavior). In order to avoid backpressuring the switch fabric,
the packet scheduler must be able to process packets at the
same rate as the switch backplane (i.e., its aggregated packet
rate) at any given port. For instance, in NVIDIA’s Spectrum
SN4700 (a state-of-the-art 400 GbE switch with 32 ports), the
packet scheduler for a single port must be able to handle an
aggregated packet rate of 8.4 billion pps [33].
(A2) Allow every port to address all buffered packets: In
order to efficiently utilize on-chip memory, switches use a
shared packet buffer that is dynamically partitioned between
its output ports [41]. In the worst case, every packet in the
shared buffer might be destined for the same output port, and
each packet might map to a different flow to be scheduled.
If the packet scheduler at a given port could only address
a subset of buffered elements, it would impose additional
constraints on the switch’s ability to handle such bursts. Thus,
a second key requirement for schedulers is the ability to allow
any output port to address every buffered packet. In modern
switches, shared packet buffers are provisioned for hundreds
of thousands of packets [33].

In 2016, a single physical PIFO instance could handle
the full aggregated packet rate for a 64-port 10 GbE switch
(1 Bpps) [41]. Today, state-of-the-art switches, e.g. the
SN4700, offer 400 GbE line rates with 32 ports (20× higher

https://github.com/cmu-snap/BBQ
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Figure 1: Scheduler architecture using priority queues without
(left), and with (right) support for logical partitioning. In a k-port
switch using priority queues without logical partitioning, we need
k2 + k priority queues in order to both implement output queueing
and absorb incast traffic from all the ports. Support for logical
partitioning reduces the number to 2k.

aggregated throughput). Given the large (and ever-widening)
gap between network and processing speeds, a single priority
queue instance can no longer sustain aggregated packet rates.
Consequently, to satisfy (A1), packet schedulers for modern
switches must “scale out” using a mesh of priority queues.

Unfortunately, priority queue designs that do not support
logical partitioning, i.e., the ability to multiplex several in-
dependent queues atop a single physical queue, require pro-
hibitively large meshes. To the best of our knowledge, PIFO
and PIEO are the only existing design that support logical par-
titioning, while more recent proposals (e.g., BMW-Tree [47])
do not. Generously assuming that a single priority queue
instance could handle 400 Gbps line-rate input in a k-port
switch, these designs would require, at minimum, a (k2 + k)
mesh of instances to realize per-output-port scheduling while
supporting the full aggregated throughput due to incasts; an
example mesh for k = 4 is depicted in Figure 1(a). Further,
every instance would have to be provisioned with hundreds
of thousands of queue elements to satisfy (A2). Overall, a
32-port switch operating at 400 Gbps line-rate would require
at least 322+32 BMW-RPU instances, each provisioned with
100K+ entries, to implement priority queueing alone. Based
on synthesis numbers reported by the authors and considering
that a switch chip area ranges from 200 mm2 to 800 mm2 [41]
this corresponds to 1.5−6× the total area.

The ability to logically partition a physical priority queue
enables a significantly simpler mesh architecture. Assuming,
again, that each priority queue instance can sustain 400 Gbps
input, we would only need 2k instances, as depicted in Fig-
ure 1(b). Each physical instance in the first layer ingests
packets from a single ingress port, but enqueues into one of
k logically independent queues corresponding to the k pos-
sible destination ports. The second layer then periodically
schedules packets among their k inputs, feeding traffic to their
respective egress ports. Despite the fact that PIFO benefits

from this architecture, its inability to scale beyond 2,048 ele-
ments means that it does not satisfy (A2). Conversely, while
PIEO scales marginally better, it does not provide the requi-
site performance, violating (A1).

Consequently, we find that no existing hardware priority
queue design is suitable for modern switches due to a funda-
mental limitation on either scaling (e.g., PIFO), performance
(e.g., PIEO), or their ability to provide logical partitioning
(e.g., BMW-Tree).

2.1.2 SmartNICs in the Public Cloud
Another key driver for programmable packet schedulers in

hardware are SmartNICs in the public cloud, either ASIC [26,
34, 37, 42] or FPGA-based [6, 15, 16, 20, 27, 35, 37]. Packet
schedulers for such NICs ought to satisfy three requirements:
(B1) Scale to tens of thousands of flows: The packet sched-
uler on the SmartNIC may need to implement scheduling
policies for a large number of active (concurrent) flows. This
might seem surprising because NIC packet buffers are typi-
cally orders of magnitude smaller than those used in switches;
however, unlike switches, modern SmartNICs may be re-
quired to make scheduling decisions for flows not just in their
local TX or RX queues, but also those residing in host memory.
This is a popular theme in the cloud setting where, in order
to save valuable CPU cycles, the hypervisor dataplane (in-
cluding scheduling functionality) is offloaded to the NIC [15].
The packet scheduler aboard the NIC is then responsible for
deciding which backlogged flow queues in host memory to
serve at any point, with the number of scheduling candidates
scaling as (tenants × flows per tenant). For instance, across
1M+ VMs in Azure, VFP [14] reports 4.8K active connec-
tions per VM at the 99th percentile, and as high as 12K at
P99.9. We expect the scalability problem to become all the
more apparent given trends of increasing core counts [5] (and
therefore potential for multitenancy), and as more services
that traditionally used multiple physical NIC queues (e.g.,
RDMA) become amenable to virtualization [19].
(B2) Sustain 100GbE+ line-rates: While state-of-the-art
NICs have lower throughput requirements compared to
switches, they still need to support line rates of 100 Gbps
and beyond [32]. This is particularly relevant in the context of
public clouds because network bandwidth is a commoditized
resource and an important driver for many high-performance
cloud-based applications [35].
(B3) Implement scheduling both across and within ten-
ants: Finally, in the context of multi-tenant clouds, the NIC
scheduler should be able to provide, at minimum, the ability
to schedule traffic across tenants (to enforce cloud providers’
policy requirements, e.g., fairness or bandwidth quotas) and
within tenants (to provide application-level priority queueing),
without imposing significant resource overhead.

Recent priority queue designs (e.g., PIEO [40], BMW-Tree
[47]) symbolize a concerted effort towards addressing the
scalability requirement outlined in (B1). For instance, we



can synthesize a PIEO instance with up to 64K entries, and a
BMW-RPU instance with 350K entries on a state-of-the-art
FPGA (§6.2). Unfortunately, these designs do not meet both
the performance (B2) and provider policy (B3) requirements.

In the context of (B2), the problem with existing de-
signs is that performance degrades rapidly as the number
of elements increases, a fundamental tradeoff associated
with comparison-based sorting. Moreover, scaling out us-
ing a mesh is not feasible because NICs are considerably
smaller and more resource-poor than switches; as such,
single-instance performance is the key factor in determining
feasibility. For example, [47] reports that a single BMW-RPU
instance can sustain 200 Mpps with 85K elements using a
28nm ASIC process; this is sufficient to drive line rate at
100 GbE (148.8 Mpps), but not at 200 GbE. The picture
is even more dire for packet scheduling on FPGA-based
SmartNICs [15, 20]. For instance, as we will show in §6.2,
BMW-Tree achieves a packet rate of 55 Mpps for 85K ele-
ments on a state-of-the-art, Intel Stratix 10 MX FPGA, 37%
of line rate even at 100 Gbps.

A second, more fundamental problem with these designs is
that it is impossible to disentangle their function (implement-
ing priority queueing) from their form (a fixed tree [10,25,47]
of queue elements). As a result, implementing n distinct
priority queues (e.g., for n tenants) requires duplicating the
underlying data structure, imposing significant resource over-
head, fragmentation of queue memory, or both. As before,
the key enabler for (B3) is logical partitioning.

Once again, we find that existing hardware priority
queues are not viable alternatives for packet scheduling
in modern SmartNICs because they do not provide the nec-
essary performance or logical queueing functionality.

2.2 Exploring a Different Tradeoff

In this work, we seek to explore a different tradeoff that
allows us to circumvent the performance-scalability barrier:
sacrificing a small amount of precision to achieve the best of
both worlds. In this regard, we are motivated by prior work’s
observation that a large fraction of networked applications do
not require particularly high precision [2, 39]. For instance,
both VLAN and DSCP support up to 8 traffic classes (3-bit
priority tags), priority-qdisc (tc-prio) in the Linux kernel
provides at most 16 priority bands, and state-of-the-art com-
mercial switches support up to 32 strict-priority queues [2].
These, in turn, provide sufficiently fine-grained priority queue-
ing to support a variety of higher-level abstractions: trans-
port protocols and frameworks (e.g., Homa [30], PASE [31],
PIAS [8]), congestion and interference controllers (RC3 [29],
QJUMP [18]), and high-performance overlay networks (e.g.,
GRIN [1], SLIM [49]). In what follows, we describe the
design of a highly scalable and performant priority queue
exploring this tradeoff.

3 BBQ Overview
BBQ is a new hardware-based priority queue architecture

for packet scheduling that is designed with three goals in mind:
(1) scalability, the maximum number of concurrent flows
that the queue can support, (2) performance, the maximum
steady-state packet rate that the queue can sustain, and (3)
logical partitioning, the ability to multiplex several logical
queues atop a single physical queue. In this section, we
give an overview of BBQ’s design before diving into the
architectural details in §4. We start with a brief introduction
to the data structure underlying BBQ in §3.1, followed by a
high-level description of the BBQ primitive in §3.2. Finally,
in §3.3, we describe the challenges the hardware architecture
must address in order to meet our system goals.

3.1 Data Structure
Integer Priority Queueing: BBQ leverages an Integer Pri-
ority Queue (IPQ) scheme to alleviate the tension between
scalability and performance (§2). Unlike traditional priority
queues where elements can have arbitrary priorities, an IPQ
requires elements to map to a finite set of integer priorities,
called its priority span; for an IPQ that supports P integer
priorities, the span is represented by the set {0, ..., P− 1}.
Quantizing the priority range allows IPQs to implement a
simple counting sort-like algorithm: the IPQ maintains an
array of P priority buckets, each representing a unique priority
in its span; when a new element is enqueued, it is inserted
into the bucket indexed by the element’s priority.

The only remaining challenge is to find the right prior-
ity bucket to dequeue from. Since only a subset of buckets
may be occupied at any time, dequeueing entails finding the
highest-priority bucket containing at least one element. A
naive approach is to sequentially check buckets in decreasing
order of priority, stopping at the first non-empty bucket; how-
ever, this may turn out to be expensive, necessitating O(P)
sub-operations in the worst case.
Building efficient IPQs using Find-First Set: One approach
to improve the run-time efficiency of dequeue operations is to
encode the occupancy of the IPQ’s priority buckets as a P-bit
wide bitmap, with ‘0’s representing empty buckets, and ‘1’s
representing buckets containing at least one element. Then,
the most-significant set bit (MSSb) in the bitmap yields the
required bucket to dequeue from. Finding the MSSb, an oper-
ation known as Find First Set (FFS), can be performed with
Θ(logP) simple bit operations (bit-shifts and additions) using
a binary search algorithm. Unfortunately, scaling to large
values of P (e.g., 32K) using FFS Queues quickly becomes
impractical due to constraints on the maximum word size
that the hardware can efficiently operate upon. For example,
general-purpose processors provide FFS intrinsics for at most
64-bit words; similarly, implementing FFS on bitmaps larger
than 64 bits would result in low operating frequency even in
more specialized circuits (e.g. ASICs or FPGAs).
Scaling to larger priority spans using Hierarchical FFS:



[45] novelly observed a recursive structure to the problem:
given an array of bitmaps ordered by priority, the highest-
priority non-zero bitmap can also be identified via a single
FFS operation using a schema similar to the one described
above. This observation naturally leads to the notion of a
Hierarchical FFS (HFFS) Queue.

The idea is to construct a tree of bitmaps, with leaf nodes
representing regular FFS Queues. The bitmaps are encoded
such that, at any level in the tree, a ‘1’ in any bit position
indicates a non-empty priority bucket in the subtree rooted at
that node. Now, to dequeue the highest-priority element, we
recursively perform FFS at each level of the tree starting with
the root, following the MSSb until we arrive at the required
priority bucket. BBQ uses a variant of the HFFS Queue as its
underlying data-structure.

3.2 The BBQ Primitive
At the heart of BBQ is a priority index structure inspired

by HFFS Queues: a perfect w-ary tree of w-bit bitmaps rep-
resenting the queue occupancy. The bitmap tree in a BBQ
can be composed of an arbitrary number of levels, which in
turn dictates the queue’s priority span. In general, for a BBQ
with w-bit bitmaps and D≥ 1 levels, the number of supported
priorities is P = wD. Figure 2 depicts a BBQ with w = 3 and
D = 2, representing P = 32 = 9 unique priorities.

The bitmap tree has a recursive structure: at the leaf level
of the tree (e.g., the L2 bitmaps in Figure 2), each bit maps
to a unique priority bucket; at non-leaf levels (e.g., L1), each
bit maps to a unique subtree of bitmaps. In either case, we
maintain the invariant that a bit in any bitmap is 1 if and only
if there is a priority bucket containing at least one element
in the corresponding subtree. In BBQ, we additionally as-
sociate with every bit a subtree occupancy counter (StOC)
that indicates the total number of elements in that subtree; a
StOC is non-zero if the corresponding bit is 1, and vice versa.
As we will see in §4, the design choice of storing additional
counters enables us to achieve stall-free execution of the BBQ
pipeline, yielding high performance (i.e., full pipelining) with
a relatively small memory overhead.

IPQs group queue elements (QEs) with identical priority in
the same priority bucket (PB). In BBQ, PBs are implemented
as doubly-linked lists of QEs. In particular, each PB stores
a pair of pointers: HEAD and TAIL, pointing to the first and
last QE in the linked list, respectively. QEs themselves are
composed of two attributes: (1) a DATA field to store arbitrary,
user-supplied identifiers3, and (2) a pair of pointers (PREV and
NEXT) to other QEs, allowing them to interface with the PBs’
doubly-linked lists.

The final component of the BBQ is the Free List (FL): a
FIFO queue containing pointers to QEs that are currently

3BBQ, like most priority queues, is agnostic of the data contained in the
QEs. The DATA attribute has a configurable bit-width and could be used to
store a pointer to a packet, flow ID, or even a reference to another BBQ.
Unless specified otherwise, we will assume that QEs represent flows [41].
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Figure 2: 2-level BBQ with w = 3 bit bitmaps. To dequeue the
highest-priority element, we recursively perform FFS at each level
of the tree starting with the root, following the most-significant set
bit (MSSb) until we arrive at the required priority bucket.

unallocated (i.e., not enqueued in the BBQ). Table 1 depicts
the operations supported by BBQ.

3.3 Goals and Challenges
Recall that we sought out to build BBQ with three key goals

in mind: scalability, performance, and logical partitioning. In
this section, we describe how BBQ meets these goals, and the
challenges the underlying hardware architecture must address
to achieve them.

3.3.1 Scalability
Using an IPQ-based design breaks the dependence between

run-time complexity of operations and queue size, allowing
BBQ to support a large number of QEs without necessitating a
fundamental performance trade-off. In many ways, scalability
“falls out” of this high-level design choice, allowing us to
explicitly optimize for the other goals.

3.3.2 Performance
While the data structure underlying BBQ is conceptually

simple, realizing this functionality in hardware in a manner
that achieves high performance is a challenging proposition.

The overall performance of the hardware queue (measured
in packets per second) is the product of two independent
metrics: (C1) fmax or the maximum frequency that the queue
operates at, which is dictated by its critical path (i.e., the
worst-case combinational delay in the hardware circuit), and
(C2) the number of operations that can be issued every cycle.
Given the logical complexity of the queue operations (i.e.,
ENQUEUE or DEQUEUE), it is impractical to perform them in
a single hardware clock cycle because it would significantly



Operation Description

ENQUEUE(X, p) Inserts the given data, X, into the
BBQ with priority p.

DEQUEUE(t)
−→ (Y, p) or ∅

t ∈ {MAX,MIN}

Extracts the data, Y, corresponding to
either the highest-priority QE (when
t is MAX) or the lowest-priority QE
(when t is MIN) currently enqueued
in the BBQ. Returns ∅ if empty.

Table 1: Priority Queue operations supported by BBQ.

throttle fmax, hurting (C1). Instead, operations must be divided
into a sequence of n stages, where each stage involves a
smaller quantum of work. While this improves fmax of the
resulting circuit by reducing combinational delay, doing so
naively (e.g., trying to avoid concurrency problems by issuing
one operation every n cycles) would slash (C2) by a factor of
n, once again degrading performance.

The key to high performance – and simultaneously the
most challenging aspect of BBQ’s architectural design – is
pipelined parallelism. In this context, pipelining refers to
designing the hardware architecture such that multiple stages
may simultaneously be active at the same time, thereby allow-
ing operations to be issued fewer than n cycles apart. Unfor-
tunately, there are several sources of complexity that make it
non-trivial to achieve a high degree of pipelined parallelism:
practical limitations on the number of R/W ports on physical
memory blocks, data hazards (i.e., ephemeral memory depen-
dencies between active pipeline stages), and control hazards
(i.e., logical and algorithmic dependencies between stages).

Our key finding in this context is that by carefully archi-
tecting BBQ’s hardware pipeline, we can, in fact, achieve
fully-pipelined execution (i.e., guaranteed throughput of 1
operation per cycle) without compromising on the maximum
clock frequency. This is realized by: (a) employing deep
pipelining to preserve fmax, and (b) using a variety of archi-
tectural techniques (speculation, write-forwarding, and in-
struction coloring) to handle pipeline hazards without stalling
or discarding operations. We describe the BBQ pipeline in
detail in §4.

3.3.3 Logical Partitioning
Full decoupling between BBQ’s queue memory (i.e., its

QEs) and its priority index structure (i.e., the bitmap tree)
gives BBQ a unique opportunity to provide logical partition-
ing with no resource overhead. The idea is to treat the bitmap
tree as a collection of n disjoint subtrees, each of which maps
to an independent BBQ. This effectively partitions the origi-
nal BBQ’s priority span into n disjoint regions; then, in order
to DEQUEUE an element from a logical BBQ, we simply “mask”
the appropriate bits in the bitmap tree while performing FFS
such that we only traverse down the corresponding subtree.

This technique allows us to fully reuse all of the physical
BBQ’s resources without any performance degradation or

fragmentation of queue memory. There is, however, a cost
in terms of precision, because each logical BBQ can only
address 1

n ’th of the priority span of the underlying instance.
For use-cases where the number of logical partitions is not
too large (e.g., 32-64 port switches [33], or cloud servers host-
ing 16-128 tenants), this is simply a matter of appropriately
provisioning the priority span of the underlying BBQ.

Since logical partitioning is, (a) a key enabler for building
efficient priority queue meshes for line-rate switches and re-
alizing hierarchical scheduling in multi-tenant cloud NICs
(§7), and (b) adds negligible overhead in the BBQ datapath,
we natively support this feature in the BBQ primitive. We
describe logical partitioning (both for prior work, as well as
BBQ) in more detail in Appendix A. Logical partitioning also
enables us to extend the BBQ primitive to operate over dy-
namic priority ranges with zero overhead, an idea we describe
in Appendix D.

4 BBQ Architecture
In this section, we describe the architectural details that

enable us to map BBQ’s design to hardware in a manner that
achieves our performance goals. We begin by describing the
hardware pipeline in §4.1, followed by a description of the
hurdles that arise while trying to fully pipeline the design.

4.1 Hardware Pipeline
In principle, enqueueing and dequeueing follow a similar

blueprint, yielding an intuitive algorithm for mapping them to
a unified datapath: for each level of the tree starting with the
root (i.e., L1), compute the bitmap index (for DEQUEUE(t),
the index is computed by performing FFS on the bitmap,
while for ENQUEUE(X, p), it is computed using simple bit
manipulations on p), increment/decrement the corresponding
StOC, then update the bitmap; finally, enqueue into or de-
queue from the doubly-linked list corresponding to the target
priority bucket. To maximize performance, we take a careful
two-pronged approach.
(1) Maximizing fmax: Our first objective is to maximize
fmax, or the maximum clock frequency at which the BBQ
circuit can operate. To do this, we use a deep pipeline where
individual stages are designed to do both little and roughly
equal amounts of work. Table 2 depicts the events that occur
at cycle-level in a 11-stage pipeline for a 2-level BBQ.4 By
load balancing expensive operations across stages, we min-
imize the number and severity of same-stage dependencies
(depicted by

↰

and⇝). For instance, chaining FFS and StOC
updates (multi-bit addition or subtraction) would result in a
large combinational delay, so we split this work across stages

4Since the L1 level has a small memory footprint, we choose to store the
associated metadata (bitmaps and StOCs) in registers with single-cycle access
latency. The larger arrays (e.g., L2 bitmaps and StOCs, priority buckets, and
queue elements) use substantially more memory and involve more complex
address decoding logic; as such, we store these in SRAM with a 2-cycle
access latency in order to optimize fmax.



Cycle Description PHR

0 Register inputs

If ENQUEUE:
F ←− FreeList.POP() // Pop free list

1 Compute L1 bitmap index↰

Read the corresponding L1 StOC L1

2 Compute, Write: L1 StOC⇝ L1 bitmap

Read L2 bitmap

L2

3 // Read delay for L2 bitmap

4 Compute L2 bitmap index↰

Read the corresponding L2 StOC

5 // Read delay for L2 StOC

6 Compute, Write: L2 StOC⇝ L2 bitmap

Read the corresponding PB

PB

7 // Read delay for PB

8 If DEQUEUE:
(a) Read X←− QEDATA[PB.TAILnew]
(b) Read Y ←− QEPREV[PB.TAILnew]

9 // Read delay for QEDATA and QEPREV

10 If ENQUEUE: // Enqueue at the HEAD
(a) QEDATA[F]←− Data to enqueue
(b) Write QENEXT[F]←− PB.HEAD
(c) Write QEPREV[PB.HEAD]←− F
(d) Write PB.HEAD new ←− F

If DEQUEUE: // Dequeue from TAIL
(a) FreeList.PUSH(PB.TAIL)
(b) Write PB.TAILnew ←− Y
(c) Output X

Table 2: 11-stage hardware pipeline for a 2-level BBQ (without
operation coloring) highlighting independent pipeline hazard regions
(PHRs).

↰

and⇝ indicate same-stage dependencies, which result in
more complex combinational logic. In general, a BBQ with D > 1
levels entails a pipeline depth of p = 7+4× (D−1) stages.

(e.g., cycles 1 and 2).

(2) Maximizing operations per cycle: As described in
§3.3.2, high fmax is only useful if we are not rate-limited
by the pipeline latency or even a portion of it. Our second
objective is to fully pipeline the BBQ design so it can concur-
rently process as many operations as there are pipeline stages,
thereby achieving its maximum rate of 1 op/cycle. There are
several challenges we encounter in this process, which we
address in detail next.

4.2 A Fully-Pipelined Architecture
Pipeline Hazard Regions: The first key enabler for BBQ’s
stall-free architecture is the design choice of associating every

bit in the bitmap tree with a subtree occupancy counter. Re-
call that for a given bit, the associated StOC indicates the total
number of elements contained in the corresponding subtree.

To understand how this enables pipelining, consider a straw-
man design with n pipeline stages where we only store the
bitmaps for each level of the HFFS tree, but not the associated
StOCs. Here, the earliest time we know whether a DEQUEUE
operation causes a priority bucket to become empty is when
the operation is committed (i.e., the final pipeline stage). Now,
consider what happens if this causes a bit in any bitmap along
the path to that priority bucket to flip (i.e., become ‘0’). Any
subsequent DEQUEUE operations in the pipeline may have been
routed along the tree based on stale state, creating an incor-
rigible control hazard. As a result, we would have to either:
(a) discard and re-issue the subsequent DEQUEUE operation(s),
hurting worst-case performance, or (b) only issue DEQUEUEs
every n cycles, defeating the purpose of pipelining altogether.

Instead, StOCs allow us to divide the BBQ pipeline into
independent pipeline hazard regions (PHRs) mapping to dif-
ferent levels of the bitmap tree, as shown in Table 2. When
exiting a PHR, the outcome of every operation (either an
ENQUEUE or a DEQUEUE) is committed to the StOC. This has
two implications: (1) two operations can only be conflicted
(i.e., have data or control dependencies between them) if they
are in a PHR at the same time, and (2) conflicts are lim-
ited to intra-PHR state (e.g., the bitmap or StOC data at that
tree level). As a result, we only have to address intra-PHR
hazards (i.e., dependencies between active operations in the
same PHR), which are far more localized – and therefore
more tractable – than hazards spanning the entire pipeline.
We characterize our implementation of StOCs in detail in
Appendix B.

While StOCs enable us to achieve stall-free operation, they
are not sufficient to guarantee a fully-pipelined design on their
own. In what follows, we describe three types of intra-PHR
hazards we encountered in our endeavor to fully-pipeline
BBQ, and the architectural techniques used to address them.
(H1) Data Hazards: The simplest form of hazards we en-
counter are data hazards, where one stage of the pipeline
either: (a) issues a memory read, or (b) waits on completion
of a memory read at an address that is concurrently updated
by a different pipeline stage.

For instance, consider the BBQ pipeline depicted in Table 2.
If Stage 2 issues a read for an L2 bitmap that is simultaneously
being modified by Stage 6, it will receive either a stale or
invalid value 2 cycles later.5 Similarly, if Stage 3 has a read
in progress for the same memory address, it will receive a
stale value on the next cycle. This is a common problem
in processor design, where the standard solution – and the
one we use here – is to perform write forwarding from a
later pipeline stage to its predecessors when a read-after-write
conflict occurs.

5Certain hardware platforms may guarantee a consistent memory view,
but this is not true in general (e.g., FPGA SRAM).



In order to resolve data hazards, we need to first compute
whether and which pairs of operations in a PHR access the
same state (e.g., bitmaps, StOCs, PBs). BBQ exploits the
hierarchical nature of the queue to make this computation
efficient: since bitmap and StOC addresses also have a hier-
archical structure to them (e.g., the address of an L3 bitmap
is generated by splicing together the address of its L2 parent
and its own index in the parent bitmap), we can both reduce
address comparator logic and improve fmax by memoizing
address conflicts at higher levels and propagating them down
the pipeline; then, when we need to compute address conflicts
for lower levels, we reuse the memoized results, necessitating
comparison of only the lower address bits.
(H2) Non-atomic bitmap accesses: A second type of intra-
PHR hazard arises due to the non-atomic nature of bitmap
accesses, causing back-to-back DEQUEUE operations to be
routed down incorrect paths in the bitmap tree.

To illustrate this problem, consider the example depicted
in Figure 3. Initially, at 1 , both the MSb and LSb of an
L2 bitmap are set, and the corresponding StOC values are
1 and 2, respectively. Now, consider two DEQUEUE-MAX op-
erations, OPA and OPB, issued one cycle apart. Since the
highest-priority (left-hand) subtree has just one element and
becomes empty after the first DEQUEUE operation (i.e., OPA),
we would expect to see OPB to be routed down the right-hand
subtree (corresponding to the LSb). Instead, we find that both
operations are incorrectly routed down the left-hand subtree.
The problem arises at 3 , the moment OPB and OPA reach Cy-
cles 4 and 5 of the pipeline, respectively. At this point, OPA is
waiting on the read for the MSb’s StOC (issued one cycle ear-
lier, at 2 ) to complete, while OPB computes the same MSSb
as OPA and issues a read for the same StOC. It is only on
the following cycle – at 4 , when OPA decrements the MSb’s
StOC down to 0 – that we discover that the left-hand subtree
becomes empty, and that OPB should have been steered to
the right-hand subtree instead; unfortunately, it is far too late
by this point. Note that this is not simply a rare performance
issue that can be addressed by, e.g., discarding trailing op-
erations in case of conflicts; rather, it is a correctness bug.
In this case, since OPB may have already been “committed”
to StOCs earlier in the pipeline, the operation cannot simply
be discarded. Once again, we would have to either: (a) stall
the pipeline, hurting worst-case performance, or (b) enforce
that DEQUEUE operations are issued at least 2 cycles apart,
throttling the queue’s DEQUEUE throughput.

To address this problem, we adopt another technique from
the architecture literature: speculation. The idea is as fol-
lows: within the Li PHRs, if we have two back-to-back
DEQUEUE-MAX operations (say, OPA and OPB, issued in that
order, respectively) that access the same bitmap, we compute
the bitmap index for OPB speculating that OPA causes the
MSSb to become ‘0’. Consequently, OPB will issue a read for
the next-MSSb. On the following cycle, if we find that OPA
indeed caused the MSSb to flip (i.e., the corresponding StOC
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Figure 3: Non-atomic read-modify-write accesses to bitmaps cause
OPB (the second of two consecutive DEQUEUE-MAX operations) to be
incorrectly routed to the left-hand subtree.
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becomes 0), our speculation was correct, and OPB proceeds
as usual. Otherwise, OPB simply discards its own state, and
adopts both the MSSb index and StOC values computed by
OPA for the remainder of the pipeline. The speculation logic
is illustrated in Figure 4.

The key observation here is that instead of squandering
OPB’s one available read on data that are going to be available
anyway (via inter-stage forwarding), we can “hedge” our bet
on multiple bits simultaneously, ensuring that at least one of
them yields the desired outcome. We also note that, while the
description presented here involves only DEQUEUE-MAX opera-
tions for the sake of simplicity, the same technique generalizes
to any combination and order of operations (i.e., ENQUEUE,
DEQUEUE-MIN, and DEQUEUE-MAX).
(H3) Non-atomic PB accesses: Conceptually similar to (H2),
the third and final type of hazard arises due to the non-atomic
nature of priority bucket accesses, causing back-to-back
DEQUEUE operations to potentially corrupt state within the
PB PHR. To see why, consider stages 6− 10 of the BBQ
pipeline. In Stage 10, DEQUEUE operations cause the PB’s
TAIL pointer to be updated (now denoted by PB.TAILnew). In
stage 8, DEQUEUE operations perform a read that is supposed
to be addressed by the most up-to-date TAIL pointer for the



corresponding PB. However, consider what happens when
two back-to-back DEQUEUE operations (say, OPA and OPB,
issued in that order, respectively) land at the same priority
bucket. At Stage 9, OPB is waiting on completion of the
read addressed by PB.TAIL available on the previous cycle.
However, OPA, now at Stage 10, modifies the TAIL pointer,
causing the read issued by OPB (for QEDATA and QEPREV) to
become stale. Unfortunately, write-forwarding does not help
here because the stale variable (PB.TAIL) is being used to
address other state, creating a control hazard.

To address this problem, we introduce the notion of opera-
tion coloring (inspired by graph coloring, problems where
vertices in a graph must be assigned colors such that no two
adjacent vertices have the same color), which works as fol-
lows. First, we tag each operation with a Color attribute,
which assumes one of two values: Purple ( ) or Orange
( ). An operation’s color determines which end of the PB’s
doubly-ended linked-list it interacts with: operations colored
purple operate on the HEAD of the PB, while those colored or-
ange operate on the TAIL. All ENQUEUE operations are always
colored purple, while DEQUEUE operations are, by default, col-
ored orange. Finally, we add a single constraint on color:
a DEQUEUE operation must not have the same color as a
conflicting operation issued immediately before it (i.e., one
cycle earlier). In the first cycle of the PB PHR (Cycle 7), if
the active operation is a DEQUEUE that conflicts with another
operation in the subsequent pipeline stage, it is recolored.
Table 3 depicts the relevant portion of the BBQ pipeline post
operation coloring (extraneous details are omitted for the sake
of brevity).

C Description

7 // Color operation

8 If DEQUEUE :
Rd QEDATA[PB.HEADnew]
Rd QENEXT[PB.HEADnew]

If DEQUEUE :
Rd QEDATA[PB.TAILnew]
Rd QEPREV[PB.TAILnew]

9 // Read delay

10 If ENQUEUE :
Update PB.HEAD new

If DEQUEUE :
Update PB.HEAD new

If DEQUEUE :
Update PB.TAIL new

Table 3: Updated stages 7−10 showing operation coloring.

Observe that, so long as the DEQUEUE operations are col-
ored differently from any operation immediately preceding
them in the pipeline, they will not incur stale reads. The key
idea here is that each operation (whether an ENQUEUE or a
DEQUEUE) only affects one pointer in the PB’s (HEAD, TAIL)
pair.6 As a result, picking a mutually exclusive color also

6The only situations in which both pointers are affected is when the
priority bucket becomes empty (i.e., due to a DEQUEUE), or a priority bucket
that was previously empty becomes non-empty (i.e., due to an ENQUEUE).
Speculation precludes the first possibility (attempting to DEQUEUE an empty
PB), so we are left with the second corner case, which we handle explicitly.

guarantees exclusivity on the data structure itself. Operations
spaced more than one cycle apart can be safely handled via
write forwarding. An artifact of this design choice is that
back-to-back DEQUEUEs landing at the same priority bucket
will not dequeue elements in FIFO order; however, since
DEQUEUEs are bound to be interleaved with ENQUEUEs during
typical operation, we do not expect this case to arise often.

Together, these optimizations realize a fully-pipelined pri-
ority queue architecture with both high fmax, and a guaranteed
operation throughput of 1 op/cycle independent of workload.

5 BBQ : A Latency-Free BBQ
While deep pipelining is key to BBQ’s high performance,

the resulting pipeline latency (i.e., the number of clock cycles
that elapse between when an operation is issued and when it
completes) introduces a new source of error in the relative
ordering of elements compared to an “ideal” priority queue.

The problem manifests due to a confluence of two factors:
(a) since it takes several cycles for an operation to traverse the
pipeline, in order to use BBQ at full throughput (1 op/cycle),
multiple operations need to be issued concurrently; and (b) for
a pipeline of depth p, the minimum delay for a high-priority
element to be dequeued, served, and re-enqueued into the
queue is also p. Consequently, any DEQUEUE operations
that are issued in the p cycle interval that the highest-priority
element is not present in the queue might ultimately dequeue
lower-priority elements. A concrete example of the prob-
lem is described in §C.1. The aforementioned problem is
inextricably tied to our decision of using a pipelined architec-
ture, implying that the BBQ primitive alone cannot guarantee
absolute accuracy at full throughput.

However, we find that a simple augmentation to the BBQ
primitive allows us to hide this latency and avoid the accuracy
issues that come with it: use a tiny PIFO as a “cache” in front
of the BBQ to hold the highest-priority elements. Whenever
this tiny PIFO overflows, it “leaks” the lowest priority element
to the BBQ. This PIFO only needs to be able to hold as
many elements as the BBQ’s pipeline depth (order of tens
of elements). Because of its small size, this instance does
not face the scalability limitations associated with the PIFO
architecture and only adds a small footprint to the design.

The augmented design, BBQ , provably guarantees zero
loss in accuracy (i.e., any dequeued element is always the
highest-priority one in the system at that time) while providing
full throughput (1 op/cycle). We can show this by proving the
sufficient condition in Theorem 1: with a PIFO whose size
exceeds the pipeline latency of the BBQ, the highest-priority
element is always served from the PIFO, such that we never
experience the accuracy or latency artifacts introduced by the
accompanying BBQ. We describe BBQ in detail in §C.2.

Theorem 1 (Priority Set Invariant for BBQ ). In a BBQ
instance composed of a BBQ with pipeline latency p cycles
and a PIFO of size k > p, the top (k− p) highest-priority
elements are always in the PIFO.



The proof can be found in §C.3.

6 Evaluation
We now evaluate BBQ. Our main goal is to understand

BBQ’s performance and viability for both ASICs and FPGA
designs. We also compare BBQ with PIFO [41], PIEO [40],
and BMW-Tree [47]. PIFO is the state-of-the-art hardware
priority queue in terms of throughput while BMW-Tree is
the state of the art in terms of scalability. Throughout this
evaluation, we show that BBQ can surpass PIFO’s throughput
while achieving similar scalability to BMW-Tree.

6.1 Setup and Methodology
We implement BBQ in SystemVerilog. Given the recur-

ring and composable structure of the design, we implement a
Python script to automatically generate different configura-
tions of BBQs by stitching together modular blocks of hand-
written SystemVerilog code. Users can specify the number
of levels in the tree (D), the bitwidth of every node (W), and
the maximum number of elements (N). We synthesize BBQ
targeting both an FPGA (Intel Stratix 10 MX FPGA [24])
as well as an ASIC. The Stratix 10 MX contains 702,720
Adaptive Logic Modules (ALMs), 140 Mb of SRAM, and two
100 Gb Ethernet ports. For comparison, we also synthesize
PIFO, PIEO, and BMW-Tree targeting the same board. For
each design and configuration, we conduct a bisection search
to find the maximum clock frequency achievable with 3 MHz
precision, picking the best synthesis across 10 seeds. To syn-
thesize the FPGA we use Intel Quartus [21]. To synthesize the
ASIC, we use Synopsys Design Compiler [43] using a 7 nm
Standard Cell Library [44] based on the ASAP7 PDK [13].

All the designs we evaluate have deterministic performance
that is independent of the workload. As such, our analysis
focuses on the packet rate that each design is able to sus-
tain, as well as the cost [36] (in terms of die area and FPGA
resources).

6.2 FPGA
As mentioned in §2.1.2, FPGA-based NICs are increas-

ingly used as a way to achieve programmable offloads on
the NIC [15, 16, 23, 35, 37]. Having a programmable packet
scheduler on the NIC would allow administrators to change
the packet scheduling algorithms at run time. In this section,
we evaluate how BBQ and the baseline designs perform, in
terms of throughput (§6.2.1) and FPGA resources (§6.2.2).
We also explore how the different BBQ design parameters
affect its performance when running on an FPGA (§6.2.3).

6.2.1 Throughput Scalability
Queue capacity can influence throughput by increasing the

hardware critical path, which in turn reduces the maximum
clock frequency that we can achieve with the design ( fmax).
To understand this effect, we synthesize BBQ (with 8-bit
bitmaps) and the baselines while changing both the queue
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Figure 6: Throughput as we scale the queue capacity.

capacity and the number of bits used to express the priorities
(precision). We report both the clock frequency as well as the
overall throughput achievable by each design.

Figure 5 shows the clock achievable by each design when
we increase the queue capacity. BBQ achieves a clock as
high as 500 MHz with 9-bit precision and 400 MHz with 15-
bit precision, significantly higher than the baseline designs.
Moreover, BBQ is able to scale to up to 217 elements while
still sustaining a 300 MHz clock. In comparison, PIFO can
only scale to up to 211 elements.

In addition to achieving a higher clock frequency, BBQ’s
fully pipelined design allows it to execute an operation (en-
queue or dequeue) every clock cycle. As a result, the through-
put difference is even higher compared to BMW-Tree (that
consumes 1 cycle to enqueue and 2 cycle to dequeue) and
PIEO (that consumes 4 cycles to enqueue and 4 cycles to
dequeue). However, different from the other designs, PIFO
is able to execute both an enqueue and a dequeue operation
in the same cycle, allowing its packet rate to match its clock
frequency. Figure 6 shows the throughput of the different
designs for different queue capacities. BBQ is able to drive
100 Gbps line rate (148.8 Mpps) with as many as 217 elements.
Also note that PIFO is able to achieve similar throughput to
BBQ, but only for small queues (128 elements or less).

6.2.2 Resource Scalability
We also evaluate how the different designs scale in terms

of FPGA resources. We report both ALM utilization and
SRAM blocks, both as a fraction of the overall number of
resources available in the target FPGA. Figure 7 shows how
the ALM utilization scales as we increase the number of ele-
ments that the queue can support. In BBQ, scaling the queue
capacity has little effect on the logic utilization. This is a
direct consequence of BBQ’s use of an integer priority queue,
which lets it avoid comparison-based sorting. BMW-Tree’s
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hierarchical design also gives it much better scalability, using
only slightly more ALM resources than BBQ. In contrast,
both PIFO and PIEO use significantly more resources as we
scale the capacity.

While BBQ’s ALM utilization remains low even for
131,072 elements (217), BBQ, like PIEO and BMW-Tree,
relies on SRAM to store its elements. As a result, we expect
SRAM utilization to increase with the queue capacity for all
these designs. Figure 8 shows this effect. Note that BBQ’s
SRAM utilization is in between PIEO’s and BMW-Tree’s.
However, PIEO and BMW-Tree require multiple copies in
order to match BBQ throughput, which causes them to use
vastly more SRAM if provisioned to meet the same perfor-
mance target.

6.2.3 BBQ Sensitivity Analysis
To understand the impact of BBQ’s configuration on per-

formance, we perform a sensitivity analysis of the bitmap
tree parameters: the number of levels (D), and the bitmap
width (W) (recall that the number of priorities is computed as
P =W D), while keeping the number of elements fixed.

Figure 9 depicts how BBQ’s throughput behaves as a func-
tion of the bitmap width. We sweep the number of levels
in the bitmap tree from D = 3 to 15 (or until we reach 215

priorities) for different bitmap widths. Then we plot the at-
tained throughput for the corresponding priority count. We
find that bitmap widths between 2 and 8 yield similar per-
formance (with 4 being optimal), but this deteriorates as the
bitmap width increases. In particular, starting with W = 16,
FFS computation becomes the primary fmax bottleneck. We
can similarly infer from the same graph that level count has
little impact on performance; for instance, we observe that
a (D = 4,W = 2) BBQ achieves the same throughput as a
(D = 8,W = 2) BBQ despite the latter containing 16× as
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many priorities. Figure 10 shows the complementary view
of the data, depicting change in throughput as a function of
priorities for different numbers of tree levels.

6.3 ASIC
We now evaluate BBQ in the context of designs targeting

ASICs. Here we compare BBQ with PIFO for two reasons:
(1) it is one of the two baseline designs that supports logical
partitioning, which, as we discussed in §2, is essential to
allow them to be efficiently incorporated into state-of-the-art
switches, and (2) it offers the best throughput among all the
baseline designs.

We synthesize both BBQ and PIFO using a 7 nm process.
PIFO only meets timing at 1 GHz with up to 211 elements,
which is consistent with [41]. BBQ meets timing at 3.1 GHz
with 217 elements, but we did not try scaling beyond this
point. The difference in the clock frequency achieved by
BBQ and PIFO means that BBQ is able to run at 55% higher
throughput. To evaluate the cost of the design, we compare
the chip area when synthesizing a single queue. We use the
synthesis results to calculate the area used by the logic gates
and estimate the SRAM area using the cost of 0.027mm2/Mb
reported by TSMC for their 7 nm process [12, 46].

Table 4 shows the chip area breakdown, divided in logic
and SRAM for both BBQ and PIFO, using 9b and 15b priori-
ties. BBQ uses very little area with logic; most of its area is
taken up by SRAM. BBQ is not only able to scale to many
more elements than PIFO, but also consumes less area when
both are provisioned for the same capacity.

Area (mm2)

Design Elements Priorities Clock Logic SRAM Total

PIFO 211 29 1 GHz 0.043 0.043
211 215 1 GHz 0.058 0.058

BBQ

211 29 3.1 GHz 0.00071 0.0029 0.0037
211 215 3.1 GHz 0.0011 0.035 0.036
217 29 3.1 GHz 0.00095 0.24 0.24
217 215 3.1 GHz 0.0014 0.29 0.29

Table 4: Chip area for the different designs. BBQ uses little logic,
causing its area to be primarily determined by SRAM.
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Figure 11: A two-level hierarchical NIC scheduler using BBQ. The
first BBQ schedules traffic across tenants. The second BBQ (which
is logically partitioned) is used to schedule traffic within each tenant.

7 Applications
In Section 2, we motivated the need for a hardware priority

queue capable of supporting packet scheduling for two rapidly
emerging use-cases: terabit-scale switches, and NICs in multi-
tenant cloud datacenters. Having evaluated its scalability,
throughput, and resource usage, in this section we describe
how BBQ can fill these application-level gaps.

7.1 Packet Scheduling on Switches
As described in §2.1.1, a key enabler for priority queue

deployment in modern switches is the ability to realize log-
ical partitioning, allowing the packet scheduler to leverage
the simpler priority queue mesh architecture depicted in Fig-
ure 1(b). BBQ achieves this by treating disjoint subtrees in
its priority index structure as independent queues (§3.3.3),
enabling multiplexing of the underlying instance; as noted
earlier, this comes at a cost in terms of precision (each logi-
cal queue gets 1

k ’th the original priority range), but with no
resource overhead, performance penalty, or fragmentation of
queue memory.

In terms of performance and scalability, we can synthe-
size BBQ instances with 100K+ entries and 32K priorities
at 3.1GHz using a 7nm ASIC process; at two operations
per packet, each BBQ instance can sustain a packet rate of
1.55Bpps. Our target switch (NVIDIA SN4700, 400GbE x32)
supports an aggregated packet rate of 8.4Bpps, implying that
a total of

⌈ 8.4
1.5

⌉
×2 = 12 BBQs that are logically partitioned

among the 32 output ports in a shared scheduler pipeline
are sufficient to match the switch fabric’s processing speed.
Based on our ASIC synthesis results for a single BBQ (§6.3),
we estimate that provisioning each of these 12 instances with
131K queue entries and 32K priorities (1K priorities per port)
would require a total area of 3.48mm2. Considering that a
switch chip area ranges from 200mm2 to 800mm2 [41] this
corresponds to 0.4–1.74% of the total chip area.

Thus, BBQ’s scalability, performance, and ability to be
logically partitioned make it, for the first time, a plausible
candidate to realize priority queueing in modern switches.

7.2 Packet Scheduling on Cloud SmartNICs
A key requirement for NIC-based packet schedulers in pub-

lic clouds is the ability to independently perform scheduling
both across tenants and within each tenant (§2.1.2). By al-
lowing several logical BBQs (each representing one tenant)

to share a single BBQ instance, we can efficiently use the
available resources (e.g., queue memory) without having to
provision one priority queue per tenant. In order to enforce
cross-tenant traffic policies, we instantiate another, smaller
BBQ that stores references to the tenant BBQs. Conceptually,
this corresponds to the two-level hierarchical scheduler de-
picted in Figure 11, with the lower and upper levels handling
intra- and inter-tenant scheduling decisions, respectively.

Previously, we evaluated the feasibility of operating BBQ
on an ASIC in the context of switches (§7.1). We now frame
our discussion about scalability and performance for Smart-
NICs in the context of the more resource-constrained device
family: FPGAs. On an Intel Stratix 10MX we can synthesize
a BBQ instance with 100K+ entries and 32K priorities that
meets timing at 302MHz, and uses 0.45% of the available
ALMs and and 9% of the total FPGA SRAM, respectively.
Consequently, a single instance can sustain 151Mpps, sur-
passing 100GbE line rate with minimum-sized packets (148.8
Mpps).

On FPGAs, scaling to higher line rates (e.g., 400GbE [22])
is beyond the capability of any single priority queue instance,
and would require augmenting the scheduler pipeline with
multiple BBQs. However, given the resource cost of each
instance relative to total FPGA resources, this is currently
impractical; any priority queue design would have to signifi-
cantly reduce its SRAM footprint (e.g., offloading elements
to DRAM) in order to make scaling out on FPGAs practical.

8 Related Work
Counting priority index: The data structure used in BBQ
is similar to the counting priority index (CPI) proposed by
Wang and Lin [45]. They were the first to hypothesize that
an integer priority queue could be used to speed up packet
scheduling in both software and hardware. Unfortunately,
CPI is not implementable in hardware in its original form as it
fails to account for the many practical issues that arise when
building a pipelined hardware design, e.g., memory access
latency, hazards, and limited memory. As we discussed in
§3 and §4, the challenging aspects of BBQ’s design stem
from these very issues. BBQ is also orthogonal to Eiffel [38],
which deals with the practical issues of using a priority index
to schedule packets in software.
Hardware priority queueing: PIFO [41] is the current
state-of-the-art priority queue implementation in terms of
throughput, and BMW-RPU [47] is the current state-of-the-art
in terms of scalability. As confirmed in our evaluation, BBQ
is able to match PIFO’s throughput while scaling beyond
BMW-RPU’s maximum capacity. Another notable hardware
priority queue design is pHeap [10], unfortunately pHeap
can only process an operation every two clock cycles, which
makes it unsuitable for line-rate switches. Further, besides
PIFO and PIEO, none of the designs that close the gap in
terms of scalability (including BMW-Tree and pHeap) support
logical partitioning efficiently, making them impractical for



deployment in both switches and SmartNICs in the cloud
setting. We characterize the efficiency that existing designs
achieve in implementing logical partitioning in §A.1.
Approximate priority queueing: There is also a line of work
that proposes approximating different scheduling algorithms
to make them amenable to hardware implementation [2, 3,
17, 39, 48]. BBQ borrows from these works the observation
that a small priority set (at the hardware level) is sufficient for
most use cases. These works provide interesting theoretical
insights and a path to implement some scheduling policies
on existing programmable switches. However, BBQ’s design
shows that it is unnecessary to sacrifice accuracy in order to
achieve scalability and speed.

9 Discussion
Limitations: A key limitation of IPQ-based designs such
as BBQ is that they operate over priority ranges that are
both finite7 and static. While we can, in fact, augment the
vanilla BBQ primitive to support dynamic priority ranges
(Appendix D), boundedness of the priority span remains an
immutable constraint. The fundamental reason is that we
must map every priority in BBQ to a bucket in physical mem-
ory, so SRAM usage scales linearly with the priority span.
Notably, this scheme becomes altogether impractical when
the required precision grows beyond a certain threshold (e.g.,
supporting 232 priorities would require over 500MB of SRAM
just to store bitmaps). In §6, we demonstrated the feasibil-
ity of synthesizing a BBQ instance with 15-bit priority tags
(32K priorities), but we don’t expect this number to scale
much further. Thus, the ideal operating point for BBQ corre-
sponds to a setting where we need to support a large number
of queue entries falling in a small (possibly dynamic) pri-
ority range. Some priority queue architectures also enable
richer abstractions (e.g., PIEO’s predicate-based filtering al-
lows scheduling based on eligibility criteria such as virtual or
wall-clock time [40]), which BBQ does not support.
Future Work: Today, we are at an inflection point with
regard to the scalability of hardware priority queue designs.
On the one hand, support for 100K+ queue entries is the cul-
mination of a decade-long concerted effort towards jointly
optimizing scalability and performance. On the other hand,
this appears to be the end of the scalability roadmap: since
every queue element must be stored somewhere, we are ul-
timately bottlenecked by available memory. For the sake of
performance, today’s designs exclusively use SRAM, which

7Technically, priority ranges are always finite (regardless of the underly-
ing priority queue design) because they are ultimately upper-bounded by the
maximum precision afforded by the priority tag (i.e., number of priority bits).
However, the point here is that comparison-based priority queue designs
(e.g., PIFO) can, in principle, create the illusion of an infinite priority range
using large priority tags; for instance, a time-based PIFO scheduler that uses
nanosecond-granularity timestamps as priorities would require well over 500
years to exhaust a 64-bit priority range (264 = 1.8× 1019 priorities). Con-
versely, IPQs hit their priority scaling limits far earlier than any reasonable
interpretation of infinity.

offers deterministic, single-cycle memory access. However,
SRAM is a scarce resource, and even highly scalable designs
such as BBQ and BMW-Tree [47] would require over 10%
of the available FPGA SRAM (§6.2) to support 200K queue
entries – a highly impractical proposition. However, given the
trend of increasing multi-tenancy in datacenters, it is not far
fetched to believe that schedulers will some day need priority
queueing for 1M+ flows. A natural question then is: how do
we get there? We believe the key to this lies in offloading
queue entries to DRAM, which provides much slower (and
non-deterministic) access latencies compared to SRAM, but is
a far more abundant memory resource. The clean decoupling
between BBQ’s priority index structure and its queue memory
(i.e., BBQ’s ability to locate the highest-priority entry without
needing access to the entry itself) makes it feasible to offload
queue memory to DRAM, but there are several challenges
that need to be addressed along the way. We leave it to future
work to realize this lofty goal.

10 Conclusion
PIFO’s vision—a programmable packet scheduler that op-

erates at line rate even on high-throughput switches—has
been hampered by throughput and scalability issues of ex-
isting priority queue designs. In this paper, we presented
BBQ, a new priority queue design that is both scalable and
fast. At the heart of its design is an integer priority queue
that allows BBQ to avoid the complexity barrier imposed
by comparison-based sorting. While this paper shows the
usefulness of BBQ for performing packet scheduling in both
FPGA SmartNICs and line rate switch ASICs, we expect such
a high-performance priority queue to find use in many other
contexts. We look forward to future work that creatively use
BBQ for other purposes.
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Appendix A Logical Partitioning in Practice
In §2, we motivated logical partitioning (i.e., the ability to

multiplex several logical priority queues atop a single physi-
cal queue) as a key requirement for deployability in modern
switches and SmartNICs. In this section, we first character-
ize the extent to which existing priority queue designs can
realize logical partitioning (§A.1), followed by a detailed de-
scription of the mechanisms that enable BBQ to achieve this
functionality (§A.2).

A.1 Existing Designs
The goal of logical partitioning is to allow a single,

physical priority queue to emulate a collection of multiple,
logically-independent priority queues. Simply realizing this
abstraction is not particularly challenging, but doing so effi-
ciently turns out to be a major impediment for most priority
queue designs. We can evaluate efficiency along three axes:
(1) queue fragmentation, or the worst-case fraction of queue
elements (QEs) lost to external fragmentation when an in-
stance is partitioned q ways; (2) performance overhead, or
the throughput degradation resulting from logical partitioning;
and, (3) resource overhead, or the resource cost (e.g., logic,
memory) required to support q logical partitions relative to
an unpartitioned priority queue.

PIFO supports logical partitioning with zero queue frag-
mentation, a small performance overhead, and a resource
overhead that scales linearly with queue size: Consider
the example depicted in Figure 12, where a physical PIFO
(provisioned with N = 8 QEs) is partitioned into q = 2 logical
PIFOs. Per usual, PIFO maintains a sorted list of QEs ordered
by priority [41]. To realize logical partitioning, PIFO anno-
tates every QE with a Logical PIFO ID (in this case, q0 or
q1) at enqueue time. Then, in order to dequeue from the i’th
logical PIFO, it first “selects” the subset of elements with the
corresponding ID (q1 in our example), then performs priority
decoding to extract the highest-priority element from that
subset. Since every QE in the physical instance can always be
independently addressed by every logical PIFO, queue mem-
ory is fully multiplexed, yielding zero fragmentation. Every
element must be annotated with a log2 q bit wide ID, resulting
in a resource overhead that scales with queue size. Finally,
selecting the appropriate subset of elements involves an extra
comparator per element, incurring a small performance cost.

With modest changes, PIEO can support logical par-
titioning with zero queue fragmentation, and perfor-
mance/resource overheads that scale with queue size: Ar-
chitecturally, PIEO is organized as a matrix: an array of
2
√

N sublists, each consisting of
√

N QEs sorted by prior-
ity. Besides standard priority queue operations, PIEO allows
specifying eligibility predicates: a programmable function
that “selects” a subset of elements to dequeue from. In princi-
ple, this is similar to the mechanism PIFO uses to implement
logical partitioning (Figure 12), and an appropriate predicate
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Figure 12: A single physical PIFO partitioned into 2 logical PIFOs:
q0 consisting of 4 elements, and q1 consisting of 3 elements. Avail-
able queue memory is fully multiplexed among the logical PIFOs,
resulting in zero fragmentation.

function can be used in PIEO to the same effect. Unfortu-
nately, the vanilla PIEO design does not allow QEs belonging
to different logical PIEOs to coexist in the same sublist. The
reason is that, as a first step, PIEO must perform predicate
filtering at sublist level, which only supports range-based
queries (e.g., a≤ f ≤ b) but not set queries (e.g., f ∈ X) that
are required for logical partitioning. Consequently, it would
incur external fragmentation at the granularity of sublists.
However, we note that this is not a fundamental limitation,
and with minor changes to the design (e.g., by annotating ev-
ery sublist with a q-bit bitmap representing the logical PIEO
QEs contained therein), PIEO can, in theory, achieve logical
partitioning with no external fragmentation while incurring a
resource/performance cost similar to PIFO.
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despite available
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Figure 13: A 2-level 2-way BMW-Tree instance partitioned into 2
logical queues. Each logical queue must be mapped to a physical
subtree, resulting in external fragmentation. Once a subtree becomes
full, enqueues into the corresponding logical queue are impossible
even if there are available QEs in other subtrees.

Other comparison-based priority queue designs cannot
efficiently implement logical partitioning: PIFO and PIEO
both satisfy a property that is key to achieving zero fragmen-
tation in fixed-layout priority queues: maintaining a total
ordering over elements at all times. In their effort to lever-
age spatial and pipelined parallelism, other designs violate
this property, inducing significant queue fragmentation. We
illustrate this point using the 2-way BMW-Tree depicted in
Figure 13. To implement partitioning between q = 2 logical
BMW-Trees, each logical queue must be statically mapped
to a physical subtree as shown in the figure;8 any other ar-
rangement might result in inadvertently dequeueing from the
wrong logical queue. The result is that, for a BMW-Tree
instance of size N, each logical queue can address only N

q

8Heap property is intentionally violated at root level to enable partitioning.



QEs, incurring a fragmentation cost that scales with q. For
instance, with q = 8 partitions, we would risk losing up to
87% of the queue memory to external fragmentation (and still
not be able to support N flows). Instead, over-provisioning the
physical instance to account for the worst case (all N elements
being enqueued in a single logical queue, while the other 7
queues remain empty) would incur a 700% memory overhead.
Other tree-like priority queue designs, such as pHeap [10]
and Pipelined Heap [25], encounter precisely the same issue.

Overall, we find that besides the designs that maintain a to-
tal ordering over elements (PIFO and PIEO), realizing logical
partitioning in comparison-based designs incurs prohibitively
high resource overhead, queue fragmentation cost, or both.

A.2 Logical Partitioning in BBQ
Given a BBQ instance with w-bit bitmaps, we illustrate how

to partition it into q logical BBQs by means of two exemplar
configurations: one where q≤ w, and another where q > w.
(1) Fewer logical partitions than the bitmap width (q≤ w):
Consider a 2-level BBQ with 4-bit bitmaps (i.e., w= 4, D= 2)
that we would like to partition into q = 2 logical BBQs. The
physical BBQ has a priority span of P = 42 = 16 priorities.
As a first step, we partition this range equally between the
two logical instances, allocating priorities [0,7] to queue q0,
and [8,15] to q1. Observe that, in order to facilitate this
split, the L1 bitmap also needs to be partitioned as shown
in Figure 14, with the lower two bits corresponding to q0,
and the upper two bits corresponding to q1. Enqueueing an
entry, X , into logical queue i ∈ [0,1] with relative priority
j ∈ [0,7] is simple: first, we compute the absolute priority
corresponding to the physical BBQ as p = (i×8)+ j,9 then
perform ENQUEUE(X, p) as usual. In order to dequeue the
highest (or lowest) priority entry from the i’th logical queue,
we first mask the bits in the root bitmap not corresponding
to qi (e.g., for i = 1, we would apply the mask 0xC), perform
FFS on them, then proceed down the bitmap tree as in a
typical DEQUEUE operation.

1  0  1  1

1  0  0  1 0  0  0  0 0  0  1  0 1  1  0  1
7    6    5    4

Queue q1 (Mask: 0xC) Queue q0 (Mask: 0x3)

15   14   13   12 3    2    1    011   10   9   8 

Figure 14: Bitmap tree for a 2-level BBQ with 4-bit bitmaps parti-
tioned into 2 logical BBQs, q0 and q1. Each logical BBQ is allocated
disjoint ranges of 8 priorities. To DEQUEUE from a logical BBQ, we
first apply the corresponding mask to the L1 bitmap before perform-
ing FFS on it.

(2) More logical partitions than the bitmap width (q >
w): Consider again a (w = 4, D = 2) BBQ that we would
now like to partition into q = 8 logical BBQs. Observe that

9Logically, this corresponds to simply concatenating together i and j.

each bit in the root bitmap now corresponds to two different
logical BBQs, and therefore does not offer any discriminatory
power.10 Consequently, we eliminate this level of the bitmap
tree; in its place, we insert a single pipeline stage that steers
operations to their respective subtrees based on the logical
queue index (e.g., ENQUEUE and DEQUEUE operations on i ∈
{2,3} are steered to the second-from-right subtree). The
updated bitmap tree structure is depicted in Figure 15. Each
L2 bitmap now maps to q′ = 2 different logical BBQs, and
we apply the idea described in (1) (since q′ ≤ w) to achieve
this partitioning.

1  0  0  1 0  0  0  0 0  0  1  0 1  1  0  1
11  10 9   815  14 13  12

Steering Logic

7   6 5   4 3   2 1   0

q7 q6 q5 q4 q3 q2 q1 q0

L2 bitmap

Figure 15: Bitmap tree for a 2-level BBQ with 4-bit bitmaps par-
titioned into 8 logical BBQs. The root (L1) bitmap no longer adds
any value, so we replace it with a steering stage that simply routes
operations on logical BBQs to the corresponding subtree.

Thus, with nominal changes to the BBQ pipeline, we can
support a broad range of partitioning configurations without
any performance overhead. In contrast to PIFO and PIEO,
the resource cost (corresponding to over-provisioning the
priority range) scales with the degree of logical partitioning
rather than queue size. Finally, full decoupling between its
priority index structure (i.e., the bitmap tree) and QEs enables
BBQ to achieve zero queue fragmentation. Overall, these
techniques make it possible for BBQ to efficiently realize
logical partitioning.

Appendix B Using StOCs in Practice
In §4.2, we described how every bit in BBQ’s bitmap tree

is associated with a StOC, which represents the total number
of elements contained in the corresponding subtree. StOCs
are an important component in BBQ because they are a key
enabler for its fully-pipelined architecture. In this section, we
characterize two practical details regarding our implementa-
tion of StOCs: how they are sized (§B.1), and a general opti-
mization technique that improves their performance (§B.2).

B.1 Sizing
In order to handle the worst case (i.e., all elements in the

BBQ being contained in a single priority bucket), every StOC
must be provisioned to represent the range [0, N], where N is
the number of supported queue elements. Conventionally, N
is configured to be a power of two (i.e., 2k) to avoid wasting
resources such as pointer address bits. However, in the case

10Since either of the logical BBQs contained therein may be empty, a ‘1’
in any bit position of the L1 bitmap provides no guarantee that a DEQUEUE
operation on that subtree will succeed.



of BBQ, naively provisioning the queue with N = 2k elements
would entail (k+1)-bit StOCs, with the most-significant bit
(MSb) only ever being used to encode the maximum occu-
pancy of 2k. Instead, in BBQ, we snap N to a value of the form
(2k−1), allowing us to use k-bit StOCs. Thus, carefully siz-
ing the queue (and deliberately wasting one element’s worth
of address space) saves 1 bit per StOC, yielding a sizeable
reduction in memory footprint.

B.2 Waterlevel Bit Optimization
Since StOC bit-widths scale with the queue size (§B.1),

performing arithmetic or logical operations on these counters
can be expensive for large BBQ instances. As we will see,
these operations sometimes need to be chained together with
other combinational logic in a single pipeline stage, which
in turn inflates the critical path and significantly degrades
fmax. In this section, we describe a general optimization tech-
nique that alleviates counter-related performance bottlenecks,
yielding up to 17% higher fmax for some BBQ configurations.

(a) 15-bit Reduce-OR 
Logically: (x15 ∨ ... ∨ x1)

Predicate

(b) Complex logic
(Bitmap update or

speculation)

Long critical path

16-bit StOC
(X−1) ≠ 0   if (Y) ... 

X−1

X'

Updated StOC

X = {x15 ... x0}

Re
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Y

Figure 16: Dependency chain involving 16-bit counter logic for
a DEQUEUE operation. The critical path comprises of (a) a 15-bit
Reduce-OR (to determine whether the StOC becomes 0), chained
with (b) more combinational logic (which uses (a) as a predicate).

To illustrate the problem, consider a DEQUEUE operation in
stage 6 of the BBQ pipeline depicted in Table 2. This stage
comprises of several sub-operations, two of which we will
focus on here: (a) decrementing an L2 StOC and checking
if the resulting value becomes zero, and (b) updating the L2
bitmap predicated on the result of (a). Note that (a) oper-
ates on a log2(N +1)-bit counter and (b) operates on a w-bit
bitmap, and chaining these sub-operations together inevitably
puts them on the critical path. The problem is further exacer-
bated if (b) entails more complex combinational logic (e.g.,
resolving speculation outcomes, which, as shown in step 4
of Figure 4, follows the same blueprint). The critical path for
this sequence of sub-operations is depicted in Figure 16.

To address this performance bottleneck, we augment every
StOC in BBQ with an additional bit called the waterlevel
bit (WLb). We maintain the invariant that the WLb is set
to ‘1’ if the current StOC value is greater than or equal to
2, otherwise it is set to ‘0’. The key idea is that the WLb
opportunistically memoizes the future result of (a),11 allowing

11Observe that, for positive values of X , the expression evaluated by (a),
(X−1) ̸= 0, is logically equivalent to X ≥ 2, the value encoded in the WLb.
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Figure 17: The waterlevel bit (WLb) replaces (a), improving fmax
by removing the counter operations from the critical path.

it to directly serve as the predicate for (b) instead of having to
compute it from scratch (Figure 17). This avoids chaining the
expensive Reduce-OR computation with other complex com-
binational logic, thereby shrinking the critical path. Moreover,
the updated value of the WLb (corresponding to the current
StOC value minus 2) can be efficiently computed using an-
other 16-bit operation; however, since this is not chained with
additional logic, it does not appear on the critical path.

In the context of BBQ, this optimization yields between
5−17% higher fmax on the Stratix 10 MX FPGA for configu-
rations with (217−1) queue entries (i.e., 17-bit StOCs). This
does come at a resource cost, since every StOC must now be
one bit wider to accommodate the WLb (corresponding to
approximately 4.75kB higher SRAM usage for a BBQ that
supports 32K priorities with 8-bit bitmaps). However, we
find that the resulting performance improvements justify this
resource overhead, and we enable this optimization by default
in the BBQ artifact.

Finally, we note that the underlying technique – memoiz-
ing useful counter arithmetic results in the counter structure
itself – is a general one that may benefit any design which
employs occupancy counters that might ultimately appear on
the critical path (e.g., BMW-Tree [47]).

Appendix C BBQ : A Latency-Free BBQ
In §5, we briefly described the latency artifacts that arise

due to pipelining, and how they might cause the packet sched-
ule produced by BBQ to deviate from that of an “ideal” pri-
ority queue. In this section, we describe BBQ , an augmen-
tation of BBQ that counteracts the latency issue. We start
with a concrete example motivating the problem (§C.1), then
dive into BBQ ’s design (§C.2), followed by a proof of its
correctness (§C.3).

C.1 Motivating Example
Consider the scenario depicted in Figure 18, where we use

a BBQ instance with a pipeline latency of p = 4 cycles to
implement strict priority scheduling at a bottleneck switch.
There is a single high-priority flow, A, competing with 3
lower-priority flows (B, C, and D); if none of the flows are
application-limited, we expect A to receive the full share of



bandwidth, while the other flows should starve (i.e., never be
served). Assume now that a single packet can be transmitted
every other cycle (i.e., line rate corresponds to one packet
every two cycles). Since it takes 4 cycles for the BBQ instance
to complete a DEQUEUE request and yield the appropriate flow
to schedule, we are faced with two alternatives for managing
priority queue state.

First, when a flow is scheduled, we might re-enqueue the
flow in the BBQ and immediately issue another DEQUEUE
request, wait 4 cycles for the BBQ to respond with the next
flow to schedule, and so on. This guarantees accuracy (i.e., the
scheduled flow is always the highest-priority one), but implies
that flows can only be scheduled every 4 cycles, wasting half
the link bandwidth.12
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Figure 18: Issuing concurrent DEQUEUE requests, in combination
with BBQ’s pipeline latency, incorrectly causes a lower-priority flow,
B, to be extracted (at t = 3) and scheduled (at t = 6).

The second option is to preemptively maintain multiple con-
current DEQUEUE requests in flight such that a flow is always
available to be scheduled. In our example, this corresponds
to issuing DEQUEUE operations 2 cycles apart such that a flow
gets dequeued every other cycle (e.g., at t = 5 in Figure 18).
While this saturates the link bandwidth, it also implies that
not all active flows are enqueued in the BBQ at dequeue time.
For instance, at t = 1, the first issued DEQUEUE operation ex-
tracts flow A from the BBQ. Consequently, at t = 3, the next
DEQUEUE operation results in the extraction of a lower-priority
flow, B. Flow A eventually returns to the BBQ at t = 4, but
it is far too late by this point: at t = 6, the second DEQUEUE
operation completes, yielding B. In effect, this violates the
strict priority scheduling requirement we sought to enforce.

12Alternatively, we might schedule bursts of packets at a time so as to
hide the pipeline latency, but this effectively imposes a leaky bucket atop the
underlying scheduling policy, which may not always be desirable.

C.2 BBQ Design
BBQ is composed of two components: a BBQ and a

PIFO instance, which are connected as shown in Figure 19.
To simplify the theoretical analysis of this system (§C.3), we
assume that both components run at the same clock frequency
(say 250MHz), and the system clock, denoted by CLOCKsys
runs at half the frequency. On each CLOCKsys cycle, we can
insert one element into the BBQ , extract the highest-priority
element, or both.

BBQ

PIFO

1 ENQUEUEPIFO

3 DEQ-MAXPIFO2 DEQ-MINPIFO

4
R
eq
ue
st

5 DEQ-MAXBBQ

BBQ

Figure 19: BBQ design.

At a high level, our goal is to keep the PIFO full, only in-
serting into the BBQ when low-priority elements “spill over”
from the PIFO. When a new element arrives at the system, it
is first ENQUEUE’d into the PIFO 1 ; if this causes the PIFO
to overflow its capacity (k), we perform a DEQUEUE-MIN PIFO

operation 2 , inserting the resulting element into the BBQ.
Extracting the highest-priority element from the system in-
volves two steps: (a) we perform a DEQUEUE-MAX PIFO opera-
tion to get the highest-priority element in the PIFO 3 , which
completes immediately, and (b) we issue a DEQUEUE-MAX BBQ

request to fetch the highest-priority element from the BBQ 4 ,
which takes p timesteps to complete (where p is the pipeline
latency of the BBQ in units of CLOCKsys cycles). Finally,
when a DEQUEUE-MAX BBQ operation completes 5 , we insert
the resulting element into the PIFO; as before, if this causes
the PIFO to overflow, we move the lowest-priority element
in the PIFO to the BBQ. Observe that on every CLOCKsys
cycle (corresponding to 2 clock cycles for each component),
we issue at most 2 BBQ operations and 4 PIFO operations (2
ENQUEUEs and 2 DEQUEUEs), which matches their respective
operation throughputs.

C.3 Proof of Theorem 1
In this section, we prove a sufficient condition for BBQ

to guarantee zero accuracy loss when using an appropriately-
sized PIFO. We start by proving a lower bound on PIFO
occupancy when the associated BBQ is not empty, followed
by an invariant regarding the subset of priorities contained
in the PIFO at any time. In the remainder of the section, we
use P (t) to denote the set of elements contained in the PIFO
at time t, and |P (t)| to denote the cardinality of this set (and
transitively the PIFO occupancy).

Lemma 1 (Lower-Bound on PIFO Occupancy). In a
BBQ instance composed of a BBQ with pipeline latency



p cycles and a PIFO of size k > p, if |P (t)| < (k− p), the
BBQ is empty at time t.

Proof. The intuition behind the Lemma is that, so long as the
BBQ is not empty, it will prevent the PIFO occupancy from
dropping below a certain threshold (corresponding to k− p).
We prove this claim via contradiction, showing that if |P (t)|<
(k− p) starting with a full PIFO (a necessary condition for
the BBQ to be non-empty), at least one DEQUEUE-MAXBBQ
request resulted in ∅ after p timesteps, implying that the
BBQ is empty at time t.

Let t1 denote the latest time that the PIFO was full, and let
t2 denote the earliest time such that |P (t2)|< (k− p). Note
that no elements are inserted in the BBQ in the period [t1, t2];
otherwise ∃ t ′1 > t1 where the PIFO is still full, implying that
t1 was not the latest time. Assume towards a contradiction
that a total of n1 DEQUEUE-MAXPIFO operations and n2 ≥ 0
ENQUEUEPIFO operations were performed in [t1, t2], and n3
DEQUEUE-MAXBBQ operations completed in the same period,
all of which returned non-∅ values.

n1− (n2 +n3)> p, (1)
n3 ≥max(0,n1− p) (2)

where (1) is true because the difference between the number
of departures from the PIFO (n1) and the number of arrivals
to the PIFO (n2 +n3) in [t1, t2] must correspond to an occu-
pancy drop from k to |P (t2)|< k− p, i.e., exceeding p. (2) is
true because a DEQUEUE-MAXBBQ request is issued for every
DEQUEUE-MAXPIFO operation, and the maximum number of
requests still outstanding is at most p. Substituting (1) into
(2), we get: n3 ≥ (n1− p)> n2 +n3, a contradiction.

We are now ready to prove Theorem 1 (restated below for
reference).

Theorem 1 (Priority Set Invariant for BBQ ). In a BBQ
instance composed of a BBQ with pipeline latency p cycles
and a PIFO of size k > p, the top (k− p) highest-priority
elements are always in the PIFO.

Proof. Given Lemma 1, we only need to consider the scenario
where (k− p) ≤ |P (t)| ≤ k. Assume that the BBQ is not
empty, otherwise all |P (t)| ≥ (k− p) elements in the PIFO
are trivially the highest-priority ones. Now, assume towards
a contradiction that only the m < (k− p) highest-priority
elements in the system are in the PIFO at a certain time t2. It
follows that the highest-priority element in the BBQ, x, has
a higher priority than the remaining |P (t2)|−m elements in
the PIFO at t2. Observe that x may only have been inserted in
the BBQ if, at the time of insertion, t1: (1) the PIFO was full,
and (2) all k elements in the PIFO had higher priority than x.

Now, for x to be the (m+1)’th highest-priority element in
the system at time t2, we must have performed n = (k−m)>
(k− (k− p)) = p number of DEQUEUE-MAXPIFO operations

since t1, implying that n (> p) DEQUEUE-MAXBBQ opera-
tions were issued in the interval [t1, t2]. Since at most one
DEQUEUE-MAXBBQ operation can be issued every timestep and
each such operation takes exactly p timesteps to complete,
it follows that at least one DEQUEUE-MAXBBQ operation com-
pleted and returned x. Thus, x is in the PIFO at time t2, a
contradiction.

Appendix D Dynamic Priority Ranges
As described in §3.1, the standard BBQ primitive operates

over a priority range that is both finite and static. While this
is sufficient in some contexts (e.g., strict priority scheduling),
many policies implicitly assume an infinite priority set (e.g.,
fair queueing). IPQs are fundamentally incapable of uphold-
ing this assumption (§9). Fortunately, prior work has shown
that in most cases, a dynamic – albeit finite – priority range is
sufficient to realize these policies [38, 39]. In this section, we
describe how BBQ can be extended to provide the abstraction
of a rolling priority window.

To handle dynamic priority ranges, we directly adapt Eif-
fel’s [38] idea of using a Circular Hierarchical FFS-based
Queue (cFFS). The idea is to have two independent HFFS
queues, each with priority span P, working in tandem: a pri-
mary HFFS queue, q0, that stores elements with priorities
[0, P), and a secondary HFFS queue, q1, mapping to elements
with priorities in [P, 2P) (i.e., just outside q1’s range). To-
gether, these queues represent a logical priority window of
[0,2P). Once the primary queue becomes completely empty,
the logical priority window advances by P, and the queue
designations are swapped, with q0 – now the secondary queue
– buffering elements with priorities in [2P, 3P), and so on and
so forth.

We follow precisely the same blueprint for BBQ, with logi-
cal partitioning enabling us to multiplex both q0 and q1 atop
a single physical BBQ instance with no resource overhead
(or modification to the primitive, for that matter). The only
additional component required is a simple controller to or-
chestrate the two logical queues. We do not implement this
feature as part of our research artifact (yet), but we expect it
to have little to no impact on BBQ’s performance.
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