
Streaming Abstractions for
Intra-Host Communication

Thesis Proposal

Hugo de Freitas Siqueira Sadok Menna Barreto
sadok@cmu.edu

March 2024

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Justine Sherry, Chair
David G. Andersen

James C. Hoe
Arvind Krishnamurthy (UW)

Aurojit Panda (NYU)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Hugo de Freitas Siqueira Sadok Menna Barreto

mailto:sadok@cmu.edu


Abstract

Hosts have historically been designed around the CPU, with peripheral devices play-
ing an auxiliary role. Today, however, the rise of specialized computing architectures has
shifted the role of peripheral devices. Accelerators and SmartNICs now perform a sig-
nificant fraction of computation and can work independently from the CPU. Yet, existing
abstractions for intra-host communication still assume CPU control. This abstraction mis-
match forces the CPU to be on the datapath; compromising performance and scalability.
These problems stem from three fundamental issues with existing abstractions. First, exist-
ing abstractions need ad hoc and complex routing logic between devices, requiring the CPU
to be involved in the routing of data, even when the data does not need to be processed on
the CPU. Second, existing abstractions make data accesses unpredictable, making it hard to
mask access latencies. Finally, existing abstractions impose fixed and application-specific
data formats, requiring the CPU to reformat the data in order to glue different devices and
applications.

The main claim in this work is that streaming abstractions allow intra-host communi-
cation to be more scalable and performant. Regarding routing, streaming allows the CPU
to be removed from the datapath, only being used to make coarse-grained decisions that
can then be implemented in the dataplane outside the CPU. Regarding access latencies,
streaming makes data accesses predictable; this can be leveraged by CPUs and accelerators,
allowing them to fetch the next input ahead of time. Regarding data format, streaming does
not impose data boundaries, allowing the same interface to be used for different kinds of
functionalities with minimal glue logic.

We show the benefits of streaming for intra-host communication with Ensō, a streaming
interface designed for communication between NICs and the CPU. We then discuss our
proposal for bringing the benefits of streaming to other devices through a programmable
host interconnect.

ii



Contents
1 Introduction 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Motivation 3
2.1 Existing Accelerator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Mismatch Between Devices’ Interface and Usage . . . . . . . . . . . . . . . . . . 3

3 Ensō: A Streaming Interface for NIC-Application Communication 5
3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Packetized NIC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Issues with a Packetized Interface . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Ensō Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Application Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Nagare: A Programmable Host Interconnect (Proposed Work) 17
4.1 Motivating Example: Accelerator Chain . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Challenges Preventing Direct Communication Between Devices . . . . . . . . . 18
4.3 Achieving Streaming Through a Programmable Host Interconnect . . . . . . . . 20
4.4 Evaluation Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Beyond Accelerator Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Thesis Timeline 23

iii



1 Introduction
Historically, the primary purpose of host interconnects was to connect the CPU to I/O de-
vices [10, 35, 36]. The underlying assumption behind this design is that CPUs are the primary
computing device, and peripheral devices simply allow the CPU to interface with the outside
world. Network Interface Cards (NICs) connect the CPU to the network, Graphics Cards (GPUs)
connect the CPU to displays, and Sound Cards connect the CPU to speakers and microphones.
The interface exposed by these devices also reflects this assumption. Existing interfaces assume
CPU control, making the CPU responsible for orchestrating data that come in and out of the
peripheral device.

Over the last 20 years, however, peripheral devices have become more complex, taking over
an increasing fraction of the computation originally performed at the CPU. This trend manifests
itself in two ways: Existing I/O devices are now capable of much richer computation and many
accelerators have been proposed that deliver better performance per watt than traditional CPUs
by targeting a narrower set of applications [1, 34, 48, 51, 54, 80, 81, 88].
I/O Devices with richer computation: I/O devices such as NICs and GPUs now support
a wide range of offloads. In the case of NICs, offloads range from simple operations, such
as checksum [22, 41], to complex transport protocol implementations [4, 17, 28, 87] or even
support for arbitrary computation—in the case of SmartNICs [67, 71] and DPUs [45]. GPUs
have followed a similar path, offering increasingly more complex offloads as well as the ability
to perform arbitrary computation [75].
Accelerators: Different from I/O devices, where data sent from the CPU is directed outside.
Accelerators do some computation on the data and then direct the output back to the CPU.
Accelerators also rely on specialized architecture in order to improve performance for a par-
ticular class of applications. In fact, while GPUs were originally conceived as an I/O device,
their ability to do highly parallel computation more efficiently than the CPU has caused them
to be increasingly used as an accelerator, where the result of the computation is sent not to an
external display but back to the CPU itself.

With peripheral devices becoming more capable, the assumption of CPU control is increas-
ingly inadequate. Some peripheral devices are now able to process data at an order of magnitude
higher bandwidth than existing CPUs [51]. As a result, imposing CPU control causes the CPU
to become a bottleneck when the goal is simply to feed accelerators with data coming from the
network. Moreover, as we will see in more detail in §2.2, having the CPU in control imposes ex-
tra round trips over the host interconnect and prevents peripheral devices from communicating
efficiently among each other.

This work argues that streaming abstractions are better suited for interconnecting comput-
ing devices within a host. Using streaming abstractions leads to several advantages over the
existing CPU-controlled interfaces we use today:
Dataplane routing: Existing CPU-controlled interfaces assume a shared memory abstraction,
which requires the CPU and the device to coordinate access to the memory. Because of the
assumption of CPU control, typically the CPU is responsible for managing the shared memory,
deciding where to place every piece of data that the device outputs. With streaming, all pieces

1



of data belonging to the same stream can be routed in the same way. As a result, the decision
of where to send each piece of data can be executed in the dataplane—demultiplexing in I/O
devices (§3) or routing in the host interconnect (§4). This avoids coordination overheads, as
well as the need for the CPU to be involved in every transfer.
Data push: Another issue with the shared memory model is that communication is often
done by exchanging pointers to arbitrary memory locations. While exchanging pointers be-
tween devices can be used to avoid explicit data copies, it also leads to unpredictable memory
accesses—as the devices cannot know where the data is until they access the pointer. This un-
predictability prevents optimizations such as prefetching, exposing memory access latencies.
Streaming instead allows one device to push data to another, masking memory access latencies.
In the case of data being pushed to the CPU, streaming allows data from the same stream to
be placed sequentially in host memory, allowing the CPU to prefetch subsequent data ahead of
time (§3). When sending data to devices, streaming allows data to be pushed directly to device
memory (§4), avoiding multiple round trips over the host interconnect.
Bytestream abstraction: The need to coordinate shared memory also requires assumptions
about data formats. When the size of the data is not known a priori, devices need to choose
between two different strategies: They can either wait for the data to arrive before requesting
space in the shared memory, which inflates latency; or they can preallocate fixed-sized buffers.
Fixed-sized buffers work reasonably well for lower-level functionality that rely on fixed-sized
units, e.g., packets in the case of NICs, or blocks in the case of disks. But because peripheral
devices increasingly operate at a higher level, data sizes can exceed the low-level blocks. As
such, fixed-sized buffers often lead to data fragmentation when high-level data exceed the buffer
size. Fragmentation adds overhead, as it requires us to recombine the different pieces of data
before processing. Fragmentation also amplifies memory access latency overheads, as we need
to do multiple pointer chases to access the same data. Streaming instead allows us to expose a
bytestream abstraction that gives the illusion of an unbounded buffer. This avoids fragmenta-
tion without the need to know the data sizes a priori. A bytestream abstraction also provides
generality as it can serve as a unifying abstraction in which devices can overlay different kinds
of data. Having a unified abstraction simplifies interoperability between different devices.

In summary, this work supports the following thesis:

Thesis Statement: Streaming abstractions improve interoperability and efficiency for intra-
host communication by providing a unifying abstraction, routing data on the dataplane, and mak-
ing data access patterns predictable.

1.1 Outline
We start by describing how existing device interfaces typically work and the problems they
cause by assuming CPU control §2. We then describe Ensō, a streaming interface between an
I/O device (NIC) and the CPU in §3. Then, in §4, we discuss our proposed work to enable
streaming abstractions among peripheral devices on the server through a programmable host
interconnect. Finally, in §5 we detail the expected timeline until the PhD defense.

2



2 Background and Motivation
In what follows we describe how existing accelerator interfaces work (§2.1) and how the as-
sumption of CPU control imposes unnecessary overheads (§2.2).

2.1 Existing Accelerator Interface
While peripheral devices perform an increasing amount of functionality and can often process
data at a higher bandwidth than the CPU itself, the interface that they expose is still designed
with the same assumption that we had when peripheral devices were simply a way for the
CPU to interface with the outside world. As a result, their interfaces push control to the CPU.
Making the CPU responsible for coordinating all data that come in and out of the device.

We illustrate a typical accelerator interface in Figure 1. It shows an example of a CPU
contacting an Intel QAT Card [48] used to offload encryption. The CPU sends commands to
the QAT card using a command queue that is stored on host memory. The command queue is
implemented as a ring buffer with the tail pointer controlled by the CPU and the head pointer
controlled by the QAT card. Each descriptor enqueued by the CPU includes a command (e.g.,
encryption algorithm to use), as well as pointers to the input and output buffers.

After enqueueing the descriptors, the CPU advances the tail pointer using an MMIO write
to the device 1 . The device then uses a DMA read to read the descriptor 2 and a second DMA
read to read the input buffer 3 . After completing the operation, the device writes the output
of the computation to the output buffer, using a DMA write 4 , and overwrites the original
descriptor with a completion notification, with another DMA write 5 . Note how this interface
gives full control over both input and output data to the CPU. It also gives the CPU control over
the accelerator functionality, making it responsible for feeding the accelerator with commands
that determine what it should process next.

The above description applies to a typical accelerator interface—where the descriptor spec-
ifies both an input and an output. But the interface exposed by existing NICs also assume
CPU control and works similarly. In §3.1.1, we describe existing NIC interfaces in more detail,
highlighting how the assumption of CPU control leads to analogous issues.

2.2 Mismatch Between Devices’ Interface and Usage
Although modern peripheral devices are increasingly more capable of operating independently
from the CPU, they still expose an interface designed for CPU control. This mismatch artificially

④ Write

     Output

③ Read

     Input

CPU

ickAssist Accelerator

Input Buffer

Output Buffer
Command eue

② Read

     Descriptor

① Tail

     Update

⑤ Write

     Completion

Figure 1: Steps to send an operation to an accelerator using a typical interface. Existing interfaces
assume CPU control, making the CPU decide which commands to run and where to place every output.

3



increases the importance of the CPU when pushing data in and out of devices. Ultimately, this
reliance on the CPU leads to performance and usability issues. In what follows, we highlight
three main features of existing device interfaces that lead to this mismatch as well as the issues
that they cause:
CPU-based routing: Existing interfaces assume peripheral devices are not in control of where
to direct data. These data can be the output of a computation, in the case of accelerators; or
data that arrived in the host, in the case of NICs. Instead, the other endpoint, typically the CPU,
is responsible for determining where the device will direct the data. Requiring that the CPU
decide the fate of every piece of data leads to two main issues:
Coordination overhead: Because routing decisions (i.e., where to direct the data) are made
separately for every piece of data, this adds computation overhead to the CPU. Moreover, in
order for the device to know where to direct the data, the CPU must send routing decisions
over the interconnect, which wastes interconnect bandwidth with metadata. As we will see in
§3.1.1, in the case of NICs, having an interface that is designed to facilitate routing on the CPU
leads to up 39% of the PCIe bandwidth to be used with metadata alone. In contrast, when the
NIC itself is in charge of making routing decisions, this overhead drops to around 1%.
Inefficient device chaining: Since the CPU determines the destination for the device’s output,
multiple devices cannot be chained together without CPU mediation. As a result, we need to
use the CPU to orchestrate transfers between devices, even when data never need to go to the
CPU.
Communication using shared memory addresses: As exemplified in §2.1, existing NIC
and accelerator interfaces often expose a combination of command queues and data buffers to
coordinate access to a shared memory. The CPU enqueues descriptors to the command queue
that point to data buffers in arbitrary memory locations. Because memory locations are arbi-
trary, this leads to what we call chaotic memory accesses. Unpredictable accesses prevent devices
from benefiting from optimizations such as prefetching, used to fetch the next data ahead of
time. For instance, in the case of NICs communicating with the CPU, we see that unpredictable
accesses cause up to 55% miss ratio in the CPU L2 cache. A similar problem manifests itself
in accelerators, where the device can only fetch the data after receiving a descriptor, having to
wait an extra PCIe RTT before it can access the data. Giving up the shared memory model in
favor of more predictable accesses allow us to mask access latency and improve performance.
Incompatible data formats: The assumption of CPU control also places constraints on the
data format output by the devices. Because the location where the device will write the output
of a computation is controlled by the CPU, the CPU needs to predetermine the size of the output
buffer. This is a problem when we do not know the size of the data beforehand. If the data end
up being larger than the buffer, the device needs to split the data among multiple buffers, leading
to fragmentation. Fragmentation amplifies the problem of chaotic memory accesses and adds
overhead at the CPU needs to spend cycles recombining the data.

All of these issues arise from the existing interfaces exposed by peripheral devices. As we
will see in the next sections, using streaming abstractions helps us overcome the above issues.

4



3 Ensō: A Streaming Interface for NIC-Application Com-
munication

Network performance dictates application performance for many of today’s distributed and
cloud computing applications [53]. While growing application demands have led to a rapid
increase in link speeds from 100 Mbps links [33] in 2003 to 100 Gbps in 2020 [97] and 200 Gbps
in 2022 [64], a slowdown in CPU scaling has meant that applications often cannot fully utilize
these links. Consequently, recent changes to NICs and networked software have focused on
reducing the number of CPU cycles required for communication: NIC offloads allow the NIC
to perform common tasks (e.g., segmentation) previously implemented in software; and more
efficient network I/O libraries and interfaces, including DPDK and XDP, allow applications
to reduce processing in the network stack. We begin with the observation that despite these
changes, utilizing 100 Gbps or 400 Gbps links remains challenging. We demonstrate that this
is because of inefficiencies in how software communicates with the NIC. While NICs and the
software that communicate with them have themselves changed significantly in the last decade,
the NIC-to-software interface has remained unchanged for decades.1

Most NICs currently provide an interface where all communication between software and
the NIC requires sending (and receiving) a sequence of fixed-size buffers, which we call packet
buffers in this proposal. Packet buffer size is dictated by software, and is usually chosen to be
large enough to fit MTU-sized packets, e.g., Linux uses 1536 byte packet buffers (sk_buffs)
and DPDK [21] uses 2kB packet buffers (mbufs) by default. We use the term packetized NIC
interface to refer to any NIC-to-software interface that uses packet buffers for communication.
We observe that two changes in how NICs are used today have led to an impedance mismatch
with packetized interfaces.

First, many NIC offloads such as TCP Segmentation Offloading (TSO) [22, 41], Large Receive
Offloading (LRO) [17], serialization offloads [49, 79, 94], and transport offloads [4, 17, 28, 87]
take inputs (and produce outputs) that can span multiple packets and vary in size. In using
these offloads with a packetized interface, software must needlessly split (and recombine) data
into multiple packet buffers when communicating with the NIC.

Second, software logic for sending (and receiving) packets uses batches of multiple packets
to reduce I/O overheads. In the common case, NICs and software process packets in a batch
sequentially. However, packetized interfaces cannot ensure that packets in a batch are in con-
tiguous and sequential memory locations, reducing the effectiveness of several CPU and IO
optimizations.

This mismatch between how modern NICs are used and what the packetized interface pro-
vides causes three problems that affect application performance:
Packetized abstraction: While imposing fixed-size buffers works reasonably well when soft-
ware always needs to exchange MTU-sized packets, it becomes clumsy when used with higher-
level abstractions such as application-level messages (e.g., RPCs), bytestreams, or even simpler
offloads such as LRO. When using this interface, the NIC (or software) must split messages that
are larger than the packet buffer into multiple packet buffers. Applications then need to deal

1Osiris [24], published in 1994, describes an interface that is nearly identical to the one adopted by many
modern NICs.

5



with input that is split across multiple packet buffers. Doing so either requires that they first
copy data to a separate buffer, or that the application logic itself be designed to deal with pack-
etized data. Indeed, implementing any offload or abstraction that deals with more than a single
packet’s worth of data (e.g., transport protocols, such as TCP, that provide a bytestream ab-
straction) in a NIC that implements the packetized interface requires copying data from packet
buffers to a stream. This additional copy can add significant overhead, negating some of the
benefits of such offloads [82, 96].
Poor cache interaction: Because the packetized interface forces incoming and outgoing
data to be scattered across memory, it limits the effectiveness of prefetchers and other CPU
optimizations that require predicting the next memory address that software will access—a
phenomenon that we refer to as chaotic memory access. As we show in §3.3, chaotic memory
accesses can significantly degrade application performance, particularly those that deal with
small requests such as object caches [9, 63] and key-value stores [5, 57].
Metadata overhead: Since the packetized interface relies on per-packet metadata, it spends a
significant portion of the PCIe bandwidth transferring metadata—as much as 39% of the avail-
able bandwidth when using small messages. This causes applications that deal with small re-
quests to be bottlenecked by PCIe, which prevents them from scaling beyond a certain number
of cores. The use of per-packet metadata also contributes to an increase in the number of mem-
ory accesses required for software to send and receive data, further reducing the cycles available
for the application. We observed scalability issues due to PCIe bottleneck in our implementation
of Google’s Maglev Load Balancer [25].

In this section, we describe Ensō, a new interface for NIC-application communication that
breaks from the lower-level concept of packets. Instead, Ensō provides a streaming abstraction
that the NIC and applications can use to communicate arbitrary-sized chunks of data. Doing so
not only frees the NIC and application to use arbitrary data formats that are more suitable for
the functionality implemented by each one but also moves away from the performance issues
present in the packetized interface. Because Ensō makes no assumption about the data format
itself, it can be repurposed depending on the application and the offloads enabled on the NIC.
For instance, if the NIC is only responsible for multiplexing/demultiplexing, it can use Ensō
to deliver raw packets; if the NIC is also aware of application-level messages, it can use Ensō
to deliver entire messages and RPCs to the application; and if the NIC implements a transport
protocol, such as TCP, it can use Ensō to communicate with the application using bytestreams.

To provide a streaming abstraction, Ensō replaces ring buffers containing descriptors, used
by the current NIC interface, with a ring buffer containing data. The NIC and the software
communicate by appending data to these ring buffers. Ensō treats buffers as opaque data, and
does not impose any requirements on their content, structure or size, thus allowing them to
be used to transfer arbitrary data, whose size can be as large as the ring buffer itself. Ensō
also significantly reduces PCIe bandwidth overhead due to metadata, because it is able to ag-
gregate notifications for multiple chunks of data written to the same buffer. Finally, it enables
better use of the CPU prefetcher to mask memory latency, thus further improving application
performance.

Although the insight behind this design is simple, it is challenging to implement in prac-

6



tice. For example, CPU-NIC synchronization can easily lead to poor cache performance: any
approach where the NIC and CPU poll for changes at a particular memory location will lead
to frequent cache invalidation. Ensō avoids this obstacle by relying on explicit notifications for
CPU-NIC synchronization. Unfortunately, explicit notifications require additional metadata to
be sent over the CPU-NIC interconnect, which can negate any benefits for interconnect band-
width utilization. Ensō mitigates this overhead by sending notifications reactively.

To understand its performance, we fully implement Ensō using an FPGA-based SmartNIC.
In §3.3 we present our evaluation of Ensō, including its use in four applications: the Maglev load
balancer [25], a network telemetry application based on NitroSketch [60], the MICA key-value
store [57], and a log monitor inspired by AWS CloudWatch Logs [7]. We also implemented a
software packet generator that we use in most of the experiments.2 We observe speedups of
up to 6× relative to a DPDK implementation for Maglev, and up to 1.47× for MICA with no
hardware offloads.

Finally, while Ensō is optimized for applications that process data in order, we show that
Ensō also outperforms the existing packetized interface when used by applications that process
packets out of order (e.g., virtual switches), despite requiring an additional memory copy.

Ensō is fully open source, with our hardware and software implementations available at
https://enso.cs.cmu.edu/.

3.1 Background and Motivation
The way software (either the kernel or applications using a kernel-bypass API) and the NIC
exchange data is defined by the interface that the NIC hardware exposes. Today, most NICs
expose a packetized NIC interface. This includes NICs from several companies including Ama-
zon [3], Broadcom [13], Intel [41], Marvell [62], and others. Indeed, prior work [76] found that
of the 44 NIC drivers included in DPDK, 40 use this interface. Due to its ubiquity, the packetized
NIC interface has dictated the API provided by nearly all high-performance network libraries,
including io_uring [18], DPDK [21] and netmap [83]. In this section, we describe the packetized
NIC interface and highlight some of the issues that it brings to high-performance applications.

3.1.1 Packetized NIC Interface

A core design choice in the packetized NIC interface is to place every packet in a dedicated
packet buffer. The NIC and the software communicate by exchanging packet descriptors. De-
scriptors hold metadata, including packet size, what processing the NIC should perform (e.g.,
update the checksum or segment the packet), a flag bit, and a pointer to a separate packet buffer
which holds the actual packet data. Most packet processing software pre-allocate a fixed num-
ber of buffers for packets; new packets (either generated by an application or incoming from the
network) are assigned to the next available buffer in the pool, which may not reside in memory
anywhere near the preceding or following packet. Because software does not know the size of
incoming packets beforehand, buffers are often sized so that they can accommodate MTU-sized
packets (e.g., 1536B in Linux and 2kB in DPDK).

2Developing this software packet generator was a necessary first step in evaluating Ensō because no existing
software packet generators could scale to the link rates we needed to stress test Ensō!

7

https://enso.cs.cmu.edu/


RX Descriptor Ring Buffer

TailNICHeadSW

Pkt. 2
Pkt. 1

Pkt. 3 Pkt. 4

Pkt. Buf. 1 Pkt. Buf. 3

Pkt. Buf. 2 Pkt. Buf. 4

Figure 2: Data structures used to receive packets in a packetized NIC interface. Each packet is placed
in a separate buffer that can be arranged arbitrarily in memory.

Figure 2 shows an example of a packetized NIC interface being used to receive four packets
from a particular hardware queue on the NIC. The NIC queue is associated with a set of NIC
registers that can be used to control a receive (RX) descriptor ring buffer and a transmit (TX)
descriptor ring buffer. Before being able to receive packets, the software informs the NIC of
the addresses of multiple available buffers in its pool by enqueueing descriptors pointing to
each one in the RX descriptor ring buffer. The NIC can then use DMA to write the incoming
packet data into the next available packet buffer and enqueue updated descriptors containing
metadata such as the packet size. Importantly, the NIC also sets a ‘flag’ bit in the descriptor to
signal to the software that packets have arrived for this buffer. Observing a notification bit for
the descriptor under the head pointer, the software can then increment the head pointer.

A similar process takes place for transmission: the sending software assembles a set of
descriptors for packet buffers that are ready to be transmitted and copies the descriptors—but
not the packets themselves—into the TX ring buffer; the flag bit in the descriptor is now used
to signal that the NIC has transmitted (rather than received) a packet.

One of the major benefits of dedicating buffers for each packet is that multiplex-
ing/demultiplexing can be done efficiently in software. If the software transmitting packets is
the kernel, this might mean associating each descriptor/packet pair with an appropriate socket;
if the software in use is a software switch [37, 74] this might mean steering the right packet
to an appropriate virtual machine. Either way, the cleverness of the packetized NIC interface
in using dedicated packet buffers shines here: rather than copying individual packets in the
process of sorting through inbound packets, the switching logic can deliver packet pointers to
the appropriate endpoints. These packets can then be processed and freed in arbitrary order.

The usage model for a modern high-performance software stack, however, looks very dif-
ferent. Instead of one software entity (e.g., kernel, software switch) mediating access to the
NIC, there may be many threads or processes with direct NIC access (i.e., kernel bypass). High-
performance NIC ASICs expose multiple hardware queues (as many as thousands [41]) so that
each thread or process can transmit and receive data directly to the NIC without coordination
between them. The NIC then takes on all of the responsibilities of demultiplexing, using, e.g.,
RSS [91], Intel’s Flow Director [41], or (for a very rich switching model) Microsoft’s Accel-
Net [29]. In this setting, the multiplexing/demultiplexing capabilities of the packetized NIC
interface offer no additional value.

8



L1d L2
0

20

40

60

M
iss

ra
tio

(%
)

(a) Miss ratio for L1d and L2 caches. We observe 55%
miss ratio for the L2 cache.

RD WR
0

20
40
60
80

PC
Ie

BW
(G

bp
s)

PCIe limit
Goodput
Metadata

(b) PCIe bandwidth utilization. Up to 39% of the read
bandwidth is consumed with metadata.

Figure 3: PCIe bandwidth and cache misses for an application forwarding small packets with a packe-
tized NIC interface (E810).
3.1.2 Issues with a Packetized Interface

While many high-performance applications today gain little from a packetized interface, they
still need to pay for the overheads accompanying it. Shoehorning data communication between
the NIC and applications into fixed-sized chunks leads to inefficient use of CPU caches and
PCIe bandwidth for small requests, as well as additional data copies due to fragmentation for
applications that rely on large messages or bytestreams.

In this section, we conduct microbenchmarks that isolate these issues, and in §3.3, we also
show the impact that these issues have on real applications.
Chaotic Memory Access: We experiment with a simple DPDK-based ping/pong program (a
description of our testbed is in §3.3) which receives a packet, increments a byte in the packet
payload, and re-transmits it. For this program, we observed maximum throughput of 40 Gbps
using a 100 Gb NIC (Intel E810) and a single 3.1 GHz CPU core. When we conduct a top-down
analysis [47], we see that the application is backend-bound, primarily due to L1 and L2 cache
misses. Figure 3a shows around 6% miss ratio for the L1d and a 55% miss ratio for the L2 cache.
This high cache miss ratio is a direct consequence of using per-packet buffers in the packetized
NIC interface. First, because packet buffers themselves are scattered in memory, reads and writes
to packet data evade any potential benefit from shared cache lines or prefetching.3 Applications
like key-value stores [5, 57] or packet processors [20] exhibit very high spatio-temporal locality
in their data access: they are designed to run to completion (i.e., they continue working on
a packet or batch until the work for that item is completed, leading to repeated accesses to
the same data), and they operate over incoming packets or batches in the order in which they
arrive (i.e., the current item being processed serves as an excellent predictor of the next one).
However, this structure is not realized in the memory layout of packetized buffers, and hence to
any cache optimizations, reads and writes appear unpredictable. Second, because every packet
is paired with a descriptor, the total amount of memory required to store all of the data required
for I/O increases, exacerbating last-level cache contention simply because more data needs to be
accessed. Indeed, prior work [61, 90] has repeatedly demonstrated that the size of the working
set for packet processing applications often outgrows the amount of cache space dedicated to
DDIO [40], negating the benefits of this hardware optimization to bring I/O data directly into
the cache. Using a different NIC interface that facilitates sequential memory accesses can drop

3We note here that the aforementioned performance penalty arises in spite of the fact that DPDK performs
mbuf-level software prefetching.

9



batch

M1 M2RX Ensō Pipe A M1 M2

M5

1

RX Ensō Pipe B

RX Notification Buf.

M3 M4

A B

3

M5M3 M4

A B

2

TailNIC

HeadSWHeadSW
HeadSW

HeadSW HeadSW

TailNIC

TailNIC

TailNIC

HeadSW

TailNICTailNIC

Figure 4: Steps to receive batches of messages in two Ensō Pipes.
the miss ratio from 6% to 0.2% for the L1d cache, and from 55% to 9% for the L2 cache.
Metadata Bandwidth Overhead: We observe that the packetized NIC interface requires the
CPU and the NIC to exchange both descriptors and packet buffers. This leads to the second
problem with the packetized interface: up to 39% of the CPU to NIC interconnect bandwidth is
spent transferring descriptors (Figure 3b). While NIC-CPU interconnect line rates are typically
higher than network line rates, the gap between them is relatively narrow. This is particu-
larly problematic for small transfers as the PCIe theoretical limit drops to only 85 Gbps with
64-byte transfers [66]. We also expect this gap to remain small in the future as a state-of-
the-art next generation server with a 400 Gbps Ethernet connection and 512 Gbps of PCIe 5.0
bandwidth would still bottleneck with 39% of bandwidth wasted on metadata. This observation
complements recent studies that also point to the PCIe as a source of congestion for transport
protocols [2].
In summary: By pairing every packet with a separate descriptor, the packetized NIC inter-
face was well designed for a previous generation of high-throughput networked applications
which needed to implement multiplexing in software. However, for today’s high-performance
applications, it introduces unnecessary performance overheads.

3.2 Ensō Overview
Ensō is a new streaming interface for NIC-application communication. Ensō’s design has three
primary goals: (1) flexibility, allowing it to be used for different classes of offloads operating
at different network layers and with different data sizes; (2) low software overhead, reducing
the number of cycles that applications need to spend on communication; and (3) hardware
simplicity, enabling practical implementations on commodity NICs.

Ensō is designed around the Ensō Pipe, a new buffer abstraction that allows applications
and the NIC to exchange arbitrary chunks of data as if reading and writing to an unbounded
memory buffer. Different from the ring buffers employed by the packetized interface (which
hold descriptors to scattered packet buffers), an Ensō Pipe is implemented as a data ring buffer
that contains the actual packet data.
High-level operation: In Figure 4 we show how an application, with two Ensō Pipes, receives
messages. Initially, the Ensō Pipes are empty, and the HeadSW and TailNIC point to the same

10



location in the buffer 1 . When the NIC receives messages, it uses DMA to enqueue them in
contiguous memory owned by the Ensō Pipes 2 . In the figure, the NIC enqueues two messages
in Ensō Pipe A’s memory, and three in Ensō Pipe B’s memory. The NIC informs the software
about this by also enqueuing two notifications (one for each Ensō Pipe) in the notification buffer.
The software uses these notifications to advance TailNIC and process the messages. Once the
messages have been processed, the software writes to a Memory-Mapped I/O (MMIO) register
(advancing HeadSW) to notify the NIC—allowing the memory to be reused by later messages
3 . Sending messages is symmetric, except for the last step: the NIC notifies the software that
messages have been transmitted by overwriting the notification that the CPU used to inform
the NIC that a message was available to be transmitted.
Ensō Pipe’s flexibility: Although Figure 4 shows the steps to send messages, because Ensō
Pipes are opaque, they can be used to transmit arbitrary chunks of data. These can be raw pack-
ets, messages composed of multiple MTU-sized packets, or even an unbounded bytestream. The
format of the data is dictated by the application and the offloads running on the NIC. Moreover,
Ensō Pipes’ opaqueness means that they can be mapped to any pinned memory within the
application’s memory space. Thus, by mapping both the RX and TX Ensō Pipes to the same
region, network functions and other forwarding applications can avoid copying packets. In our
evaluation (§3.3) we use this approach when implementing Maglev and a Network Telemetry
application.
Performance advantages of an Ensō Pipe: The fact that data can be placed back-to-back
inside an Ensō Pipe addresses both of the performance challenges we listed previously: First,
Ensō Pipes allow applications to read and write I/O data sequentially, thus avoiding chaotic
memory accesses. Second, as shown in Figure 4, inlining data in an Ensō Pipe removes the
need for per-packet descriptors, thus reducing the amount of metadata exchanged over the
PCIe bus, and reducing cycles spent managing (i.e., allocating and freeing) packet buffers.
Challenges: Although implementing a ring buffer for data transfer is, on its own, a simple idea,
coordinating the notifications between the CPU and the NIC to update head and tail pointers
turns out to be challenging.
Efficient coordination: The packetized interface coordinates incoming and outgoing packets by
‘piggybacking’ notifications in the descriptor queue itself. Each descriptor includes a ‘flag bit’
that can be used to signal when the descriptor is valid. Software polls the next descriptor’s flag
bit to check if a new packet arrived. We cannot use the same strategy for Ensō Pipes as they do
not assume a format for the data in the buffer, and hence cannot embed control signals in it.

Naïve approaches to notification can stress worst-case performance of MMIO and DMA. In
particular, concurrent accesses to the same memory address can create cache contention be-
tween the CPU and the NIC. Ensō uses dedicated notification buffers to synchronize updates to
head and tail pointers; when combined with batching and multiqueue processing, the notifica-
tion buffer approach reduces the threat of cache contention.
Notification pacing: Ensō Pipes are designed so that notifications for multiple packets can
be combined, reducing the amount of metadata transferred between the CPU and the NIC.
However, it is still important to decidewhen to send notifications: when sent too frequently they
waste PCIe bandwidth and add software overheads, but if sent too infrequently the core might

11



be idle waiting for notification, thus reducing throughput. Ensō includes two mechanisms,
reactive notifications and notification prefetching, that control when notifications are sent. These
mechanisms are naturally adaptive, i.e., they minimize the number of notifications sent without
limiting throughput, and can be implemented without adding hardware complexity.
Low hardware complexity and state: Because the design of Ensō involves both hardware and
software, we must be careful to not pay for software simplicity with hardware complexity.
Ensō favors coordination mechanisms that require little NIC state. We aim for a design that is
simple and easily parallelized.
Target applications: Ensō implements a streaming interface that is optimized for cases where
software processes received data in order. Our evaluation (§3.3) shows that this covers a wide
range of network-intensive applications.

One might expect that the resulting design is ill-suited for applications that need to multi-
plex and demultiplex packets (e.g., virtual switches like Open vSwitch [74] and BESS [37]), as
such applications require additional copies with Ensō.4 However, perhaps surprisingly, Ensō
outperforms the packetized interface even when it requires such additional copies. When com-
paring the performance of an application that uses Ensō and copies each packet, to a similar
DPDK-based application that does not copy packets, using a CAIDA trace [15] (average packet
size of 462 B), we find that Ensō’s throughput is still 28% higher than DPDK’s (92.6 Gbps vs.
72.6 Gbps).

3.3 Evaluation Summary
We now give a summary of our experiments. Refer to the full paper [85] for all the microbench-
marks and applications.

3.3.1 Setup and Methodology

Device Under Test (DUT): We synthesize and run the Ensō NIC on an Intel Stratix 10 MX
FPGA NIC [46] with 100 Gb Ethernet and a PCIe 3.0 x16 interface. Most of the NIC design runs
at 250 MHz. Our baseline uses an Intel E810 NIC [42] with 100 Gb Ethernet and a PCIe 4.0 x16
interface, and uses DPDK to minimize software overheads. All our experiments are run on a
server with an Intel Core i9-9960X CPU [44] with 16 cores running at 3.1 GHz base frequency,
22 MB of LLC, and PCIe 3.0. We disable dynamic frequency scaling, hyper-threading, power
management features (C-states and P-states), and isolate CPU cores from the scheduler.
Packet generator: The packet generator machine is equipped with an Intel Core i7-7820X
CPU [43] with 8 cores running at 3.6 GHz base frequency, 11 MB of LLC, and PCIe 3.0. It includes
another Stratix 10 MX FPGA connected to the E810 and the FPGA on the DUT machine.

We found that existing high-performance packet generators such as DPDK Pktgen [93] and
Moongen [26] are unable to keep up with Ensō’s packet rate because their performance is lim-
ited by the packetized NIC interface. We thus implement EnsōGen, a packet generator based

4Note that this overhead only affects applications that multiplex/demultiplex packets, and does not apply to
software, e.g., TCP stacks, that processes packet data but might need to reorder packets. This is because reordering
packet data (rather than whole packets) requires a memory copy when using either interface.

12



1 2 4 8
Number of cores

0

50

100

150

Pa
ck

et
ra

te
(M

pp
s)

Ensō E810

Figure 5: Raw packet rate. Ensō is bottlenecked by Ethernet while the E810 does not scale beyond two
cores. The dashed line represents the 100 Gb Ethernet limit.
on Ensō. EnsōGen generates packets from a pcap file, and can send and receive arbitrary-sized
packets at 100 Gbps line rate using a single CPU core. We use EnsōGen in all experiments except
for MICA, where we send requests from a MICA client.
Methodology: We measure zero-loss throughput as defined in RFC 2544 [12, 65] with a preci-
sion of 0.1 Gbps. We report median throughput and error bars for one standard deviation from
ten repetitions. We measure latency by implementing hardware timestamping on the FPGA,
which achieves 5 ns precision for packet RTTs. EnsōGen keeps a histogram with the RTT of
every received packet, which we use to compute median and 99th percentile latencies. PCIe
bandwidth measurements use PCM [19] and we obtain other CPU counters using perf [72]. To
evaluate MICA, we use the same methodology as the original paper [57] for consistency.

3.3.2 Microbenchmarks

Packet rate: We start by measuring how fast Ensō can process packets. We compare the
performance of an Ensō-based echo server to that of a DPDK-based echo server. On receiving
a packet, both versions increment a value in each packet’s payload and then send the packet
back out through the same interface. We increment the payload value to ensure that all packets
are brought into the processing core’s L1d cache. For the Ensō echo server, we use an RX/TX
Ensō Pipe, which lets it echo packets without copies.

Figure 5 compares the packet rate for Ensō and DPDK for different numbers of cores. Even
with a single core, Ensō is bottlenecked by Ethernet, achieving 148.8 Mpps. In contrast, the E810
with DPDK achieves 59 Mpps with a single core and does not scale beyond two cores, where it
peaks at 88 Mpps. Beyond two cores, the experiments with the E810 are bottlenecked by PCIe
bandwidth, which is insufficient for transferring packet data and descriptor metadata. As a
result, the number of packets dropped by the E810 NIC increases as we increase the number of
cores, and the zero-loss throughput decreases beyond two cores.
Reactive Notifications and Latency: Ensō is able to reduce metadata overhead by sending
notifications reactively. We measure the impact reactive notifications have on throughput and
latency, by comparing Ensō’s performance (reactive) to that of a variant of Ensō (per-packet)
that sends a notification for each packet. We again reuse the echo server from previous mi-
crobenchmarks for this.

Figure 6 shows the RTT (50th and 99th percentiles) as we increase load for both cases. While

13



0 25 50 75 100
O�ered load (Gbps)

0
10
20
30
40
50

La
te

nc
y

(µ
s) Reactive 99th pctl.

Reactive 50th pctl.
Per packet 99th pctl.
Per packet 50th pctl.

Figure 6: RTT for different loads when using a no-
tification per packet or reactive notifications with-
out notification prefetching.

0 25 50 75 100
O�ered load (Gbps)

0
10
20
30
40
50

La
te

nc
y

(µ
s) Ensō (No pref.) 99th pctl.

Ensō (No pref.) 50th pctl.
Ensō (Pref.) 99th pctl.
Ensō (Pref.) 50th pctl.
E810 99th pctl.
E810 50th pctl.

Figure 7: RTT for different loads for the E810
as well as Ensō with and without notification
prefetching.

reactive notifications can sustain up to 100 Gbps of offered load, a design using per-packet
notifications can only sustain 50 Gbps. However, reactive notifications also add latency with
increased load.

We use notification prefetching to minimize latency under high loads.5 When using notifi-
cation prefetching, the software explicitly sends the NIC a request for notifications pertaining
to the next Ensō Pipe, while consuming data from the current Ensō Pipe. This effectively dou-
bles the number of notifications that the NIC sends to software at a high rate but ensures that
the software does not need to wait for a PCIe RTT before processing the next Ensō Pipe.

Figure 7 shows the RTT with an increasing load for Ensō with and without notification
prefetching and for an E810 NIC with DPDK. We observe that notification prefetching signifi-
cantly reduces Ensō’s latency, and allows us to achieve latency comparable to the E810, while
still sustaining 100 Gbps.

3.3.3 Application Benchmarks

We now evaluate how Ensō impacts the performance of real applications. We ported four dif-
ferent applications to use both DPDK and Ensō. These applications represent three classes of
network-intensive applications (raw packets, message-based, and streaming) that we expect to
be used with Ensō: Google’s Maglev Load Balancer [25], a network-telemetry application based
on NitroSketch [60], MICA Key Value Store [57], and a log monitor inspired by AWS Cloud-
Watch Logs [7]. To enable a fair comparison, we use the same processing logic for both DPDK
and Ensō-based implementations, changing only the wrapper code used to send and receive
packets. Moreover, we only enable simple traditional offloads on the NIC, e.g., RSS, Flow Di-
rector, and checksum, for both Ensō and DPDK. We expect Ensō to perform even better with
more offloads on the NIC.

Table 1 summarizes the performance we measure for all the applications that we evaluated
when using a single CPU core. Note how Ensō improves application throughput by up to 6×.
Besides throughput improvements, MICA also sees a reduction in latency of up to 43% when
using Ensō.

5By default Ensō does not prefetch notifications. Latency-sensitive applications may enable notification
prefetching at compile time.

14



Application Ensō Throughput E810 Throughput
Maglev Load Balancer 138 Mpps 23 Mpps
Network Telemetry with NitroSketch 121 Mpps 33.9 Mpps
MICA Key-Value Store 7.6 Mops 5.8 Mops
Log Monitor 2–100 Gbps 2–53.2 Gbps

Table 1: Throughput obtained when running different applications with a single CPU core when using
Ensō or the E810 NIC with DPDK. Log monitor numbers are shown as ranges as they depend on the
target application.
3.4 Related Work

Direct application access: While giving applications direct access to the NIC has been a
common theme of research for more than three decades [8, 24, 27, 38, 56, 73, 83, 84, 89, 95, 96],
most work accepts the NIC interface as a given and instead look at how to optimize the software
interface exposed to applications. A notable exception is Application Device Channels [24],
which gives control of the NIC to the kernel while giving applications independent access to
different queues. We take inspiration from it in the way that we allow multiple applications to
share the same NIC.
Alternative NIC interfaces: There are also proposals that try to address some of the perfor-
mance and abstraction issues that we highlighted for the packetized interface.

In terms of performance, Nvidia MLX 5 NICs [22] provide a feature named Multi-Packet Re-
ceive Queue (MPRQ) that can potentially reduce PCIe RD bandwidth utilization with metadata
by allowing software to post multiple packet buffers at once. However, this is not enough to
completely avoid PCIe bottlenecks as the NIC still needs to notify the arrival of every packet,
consuming PCIe WR bandwidth. Another proposed change to the NIC interface is Batched
RxList [78]. This design aggregates multiple packets in the same buffer as a way to allow de-
scriptor ring buffers to be shared more efficiently by multiple threads, which in turn could help
them avoid the leaky DMA problem [90].

In terms of abstraction, U-Net [92] and, more recently, NICA [28] allow the NIC to ex-
change application-level messages directly. U-Net proposes a communication abstraction that
resembles part of what is now libibverbs (RDMA) [58] and NICA uses a similar mechanism
named “custom rings.” However, similar to the packetized interface, both U-Net and NICA use
descriptors and scattered buffers and, as such, inherit its performance limitations.
Application-specific hardware optimizations: Prior work has optimized the NIC for spe-
cific applications. FlexNIC [55] quantifies the benefits that custom NIC interfaces could have to
different applications. NIQ [30] implements a mechanism to reduce latency for minimum-sized
packets by using MMIO writes to transmit these packets. It also favors MMIO reads over DMA
writes for notifying incoming packets. NIQ’s reliance on MMIO means that it is mostly useful
for applications that are willing to vastly sacrifice throughput and CPU cycles to improve la-
tency. nmNFV [77] stores packet payloads on NIC memory, sending only the packet headers
inlined inside descriptors, which is useful for network functions that only need to modify the
header. This is orthogonal to Ensō’s interface changes and could also be used with it.

15



Application-specific software optimizations: Some proposals avoid part of the overheads
of existing NICs with application-specific optimizations in software. TinyNF [76] is a userspace
driver optimized for network functions (NFs). It relies on the fact that NFs typically retransmit
the same packet after processing. It keeps the set of buffers in the RX and TX descriptor rings
fixed, reducing buffer management overheads. eRPC [52] is an RPC framework that employs
many RPC-specific optimizations. For instance, it reduces transmission overheads by ignoring
completion notifications from the NIC, instead relying on RPC responses as a proxy for comple-
tions. FaRM [23] is a distributed memory implementation. It uses one-sided RDMA to imple-
ment a message ring buffer data structure that has some similarities to an Ensō Pipe. However,
different from an Ensō Pipe, FaRM’s message buffer is not opaque (enforcing a specific message
scheme), must be exclusive to every sender, and lacks a separate notification queue (requiring
the receiver to fill the buffer with zeros and to probe every buffer for new messages).

16



4 Nagare: A Programmable Host Interconnect
(Proposed Work)

We showed with Ensō how having the dataplane do data routing (demultiplexing) can greatly
simplify the interface between the NIC and the applications, leading to better performance and
flexibility. In this proposed work, we seek to apply some of the same principles that we used
when designing Ensō to device communication within a host. Our primary goal is to enable
direct communication among devices without CPU intervention.

In §2, we described how existing accelerator interfaces are designed for CPU control. As
a result, direct communication between accelerators requires coordination from the CPU. Al-
though there are proprietary techniques, such as GPUDirect [69], that allow direct communi-
cation between GPUs, NICs, and storage devices, they are not fundamentally different from
the CPU-controlled interface. GPUDirect still uses a similar interface based on shared memory,
simply moving the centralized control over the communication from the CPU to the GPU. As a
result, GPUDirect still suffers from similar issues as the CPU-centered designs, presenting lim-
ited scalability, and not being able to chain multiple devices efficiently. Moreover, GPUDirect’s
proprietary nature means that it is only applicable to GPUs and not interoperable with other
peripheral devices or even non-Nvidia GPUs.

We start by presenting a motivating example with a chain of accelerators and how existing
accelerator interfaces prevent us from realizing it efficiently (§4.1), outlining the challenges
that prevent direct device communication today (§4.2). We then briefly describe Nagare, our
proposal to enable direct device communication using a programmable host interconnect (§4.3)
and our plan to evaluate it (§4.4). Finally, we reflect on other use cases that are enabled by a
programmable host interconnect (§4.5).

4.1 Motivating Example: Accelerator Chain
Consider the example in Figure 8 where we want to perform machine learning inference on an
encrypted image received over the network. In this scenario, we aim for the NIC to send the
encrypted image to a decryption accelerator (e.g., Intel QAT [48]), which will then forward the
image to a machine learning accelerator (e.g., TPU [51]) to perform inference. Finally, the ML
accelerator will send the inference result back to the NIC.

Today, the shared-memory model requires the CPU to mediate the transfers between every
accelerator. As a result, data do not move directly between the accelerators in the chain, instead
being directed back and forth through the CPU. Table 2 shows the PCIe operations required
to implement the accelerator chain using the shared memory model. Note how the CPU is
interposed in every transfer, sending commands and data to the device and receiving the output

NIC (RX)
Encrypted Image

QAT
ML

Accel.
NIC (TX)

Decrypted Image Inference Result

Figure 8: Example of accelerator chain being used to implement machine learning inference on an
encrypted image.

17



Direction Data (PCIe Operation) Latency

NIC → CPU Encrypted Image (DMA WR) 1/2 PCIe RTT

CPU → QAT Command Notification (MMIO WR) 1/2 PCIe RTT
CPU → QAT Command (DMA RD) 1 PCIe RTT
CPU → QAT Encrypted Image (DMA RD) 1 PCIe RTT

QAT → CPU Decrypted Image (DMA WR) 1/2 PCIe RTT

CPU → ML Accel. Command Notification (MMIO WR) 1/2 PCIe RTT
CPU → ML Accel. Command (DMA RD) 1 PCIe RTT
CPU → ML Accel. Decrypted Image (DMA RD) 1 PCIe RTT

ML Accel. → CPU Inference Result (DMA WR) 1/2 PCIe RTT

CPU → NIC Descriptor Notification (MMIO WR) 1/2 PCIe RTT
CPU → NIC Descriptor (DMA RD) 1 PCIe RTT
CPU → NIC Inference Result (DMA RD) 1 PCIe RTT

Total Latency: 9 PCIe RTT

Table 2: Sequence of PCIe operations required to implement the chain in Figure 8 (NIC → QAT → ML
Accel. → NIC) with existing CPU-controlled interfaces.

Direction Data (PCIe Operation) Latency

NIC → QAT Encrypted Image (DMA WR) 1/2 PCIe RTT
QAT → ML Accel. Decrypted Image (DMA WR) 1/2 PCIe RTT
ML Accel. → NIC Inference Result (DMA WR) 1/2 PCIe RTT

Total Latency: 1.5 PCIe RTT

Table 3: Sequence of PCIe operations ideally required to implement the chain in Figure 8 (NIC → QAT
→ ML Accel. → NIC).
of the computation back. Besides the overhead of inefficient routing due to CPU interposition,
the CPU is also not able to efficiently push data to devices, requiring a combination of a CPU-
initiated MMIO write and a device-initiated DMA read to move data to every device. These two
factors combined result in the entire chain having a communication latency of 9 PCIe RTT.

If, instead of the CPU-controlled shared memory model, we let the devices communicate
directly, we can reduce the total communication latency of the same example chain to 1.5 PCIe
RTT (as shown in Table 3). To achieve this ideal communication latency, devices should be
able to push data directly to each other without CPU mediation. In the following section, we
discuss the challenges that prevent this from happening today and how an alternative based on
streaming can help.

4.2 Challenges Preventing Direct Communication Between Devices
Although the PCIe standard supports peer-to-peer communication among PCIe devices, the
shared memory model requires centralized coordination to decide where in memory to store
the data and what functionality will run in the device. When we assume that both the input
and output data reside in the host memory and will be accessed by the CPU, it makes sense to
have the CPU decide where to place the data. But this model imposes many challenges when the

18



goal is to have the data traverse different devices. These challenges prevent us from achieving a
design that removes the CPU from the datapath. Here, we elaborate on each of these challenges
and argue how streaming can be used to address them:
Efficient data push: There are two main ways of moving data using the shared memory
model: “pull” or “push.” We can either have the sender transmit the address of the data to the
receiver device and have the receiver device fetch the data from this address (we refer to this
as “pull”); or have the receiver transmit a buffer address to the sender and have the sender
device store the data at this location (we refer to this as “push”). None of these strategies is
ideal. The pull strategy imposes an interconnect RTT as soon as we are ready to transfer the
data. The push strategy can mask the interconnect RTT by sending buffers ahead of time but
leads to fragmentation when we do not know the size of the data beforehand. Fragmentation
adds overhead due to unpredictable memory accesses as well as the need for the receiver to
recombine the data before processing. In addition, both strategies require that we exchange
metadata over the interconnect to coordinate pointers, which, as we saw in §3, can consume a
significant fraction of the interconnect bandwidth.
Solution – Streaming buffer : With streaming, we can implement data push without fragmen-
tation or the need to coordinate every piece of data. The sender does not need to know the
buffer address where it needs to send the data, it simply sends the data to a unified input buffer
(streaming buffer) in the device. Because data is always pushed after the previous one in the
same buffer, there is no need to coordinate a separate buffer for every piece of data or to frag-
ment the data.
Policy-Based Routing: Routing decisions between accelerators can be complex. As such,
having the CPU interposed in every transfer allows programmers to implement rich glue logic
and forwarding decisions. To be able to remove the CPU from the datapath, we should be able
to replicate similarly complex decisions without the CPU.
Solution – Streaming routing: With streaming, we can make complex routing decisions per
stream, instead of for every piece of data. The CPU is only used when establishing a new stream,
all subsequent data in the same stream is routed in the same way in the interconnect itself.
This preserves the richness of CPU-based routing, without requiring the CPU to be interposed
in every transfer. However, the ability to do routing on the dataplane, even if simple, requires
architectural changes to the existing host interconnect.
Device Control: Besides deciding what accelerator to send an output, we also need to decide
which commands should execute on the given accelerator and which state, if any, should be
available to the device. With CPU control, the CPU is also responsible for sending the right
command and state to the device.
Solution – Streaming state: Similarly to what we do when routing data, we can involve the CPU
only once per stream. When establishing a stream, the CPU decides not only the routing, i.e.,
the sequence of accelerators that the data should traverse, but also the functionality that each
of these devices should run. The dataplane will then store the sequence of commands that it
should send to each accelerator for a particular stream. The data plane should also keep state
associated with each stream that it can feed directly to accelerators with the corresponding data

19



and commands.
Compatibility: The last challenge in removing the CPU from the datapath is that each de-
vice today exposes a slightly different interface, with their own data formats and sequence of
required transfers. Therefore, the role of the CPU extends beyond data routing and device con-
trol, being responsible for glueing the different device interfaces together. To replace the CPU,
the dataplane should be flexible enough to allow different accelerators with slightly different
interfaces to communicate.
Solution – Common streaming interface and dataplane programmability: Solving the compati-
bility issue requires two solutions. The first solution is to define a common streaming interface.
This will allow future accelerators to be more easily interoperable without glue logic. The
second solution is to allow programmability in the dataplane, allowing the dataplane to act
differently depending on the devices that we need to connect. This lets existing devices enjoy
some of the benefits of streaming without requiring hardware changes to the devices.

4.3 Achieving Streaming Through a Programmable Host Interconnect
Our proposal to enable efficient communication between peripheral devices is to make routing
decisions directly on the dataplane, in the host interconnect itself. The idea is to have devices
push data to the interconnect through streams and make the interconnect responsible for di-
recting the data to the right accelerator based on user-defined policies. Operators can specify
chains of accelerators using policy graphs, similar to those used to specify chains of network
functions in NFV [50, 59, 70].

Our system named Nagare relies on a programmable PCIe switch to implement policy-based
routing in the dataplane, relying only on the CPU to configure new streams. This switch exposes
a stream abstraction to devices. Its programmable nature should also allow us to integrate
existing peripheral devices that were not originally designed for streaming.
Architecture: We envision a PCIe switch architecture similar to RMT [11], where messages
traverse multiple pipeline stages and each stage can perform simple instructions with a fixed
number of cycles. These instructions can use message fields or registers as input or output. We
can use this architecture to process incoming PCIe messages, converting them to a different
kind or changing message fields, e.g., destination, depending on the desired functionality. The
switch should also be able to issue new messages as needed.

This architecture can guarantee a fixed latency overhead that depends on the number of
stages in the pipeline. For instance, if each stage of the pipeline requires 10 clock cycles, an
architecture with 10 stages running at 3 GHz would add a fixed latency overhead of only 33 ns
to existing PCIe switches. This is only a 9% increase in the one-way intra-host PCIe latency of
379 ns reported by previous work [39].
Push primitive: To allow devices to send data directly to each other, without CPU interven-
tion, the switch exposes a push primitive. This primitive allows devices to send data directly to
each other without having to be aware of the policy graph currently configured in the switch.
To implement the push primitive, the switch dedicates an addresses in the host address space to
each established stream. Devices simply need to send DMA writes to the corresponding address

20



to push data to the right stream. The switch can then look at the incoming PCIe messages and
use the destination address to match the message to one of the open streams. Once the switch
determines the stream, it is able to route the message to the appropriate device following the
policy graph.
Working with existing accelerator interfaces: While the new push primitive allows new
devices to adopt streaming, it has limited applicability today as it does not help existing ac-
celerators. As discussed in §2.1, accelerators typically rely on a command queue stored in host
memory to allow the CPU to submit commands, as well as pointers to input and output data. To
be able to send data directly to existing devices, the switch needs to be able to use this interface.

Having a programmable PCIe switch allows us to bring streaming abstractions to exist-
ing devices, without requiring changes to the devices themselves. The switch can serve as a
glue between different devices that expose different interfaces. Note that the switch operation
required to interface with existing devices is not as complex as it may appear at first glance.
That is because the switch only needs to perform dataplane operations (i.e., sending data and
commands to the devices and routing the output to the next accelerator). Device configuration
should still be done from the CPU.

4.4 Evaluation Plan
We plan to evaluate Nagare using a combination of cycle-accurate simulation and ASIC synthe-
sis. Using cycle-accurate simulation helps us to understand the performance when integrating
the programmable switch with existing open-source accelerators [14, 54, 68] and NICs [32, 85].
ASIC synthesis will let us know the maximum clock frequency achievable, as well as the cost
of the design [86] (in terms of power and silicon die area).
Cycle-accurate simulator: We plan to use an existing PCIe simulation framework that im-
plements different components of the PCIe fabric [31], including the root complex, switches,
and devices. The framework also integrates with PCIe core implementations for both Intel and
AMD (Xilinx) FPGAs. This simplifies integration with existing accelerator and NIC designs.
Moreover, the framework is based on cocotb [16], which will allow us to quickly prototype
different design options.
ASIC synthesis: We plan to implement only the programmable component of the Nagare
switch in RTL. Then, we can synthesize the ASIC to understand the cost and performance
of the additional programmable component, without the need to reimplement an entire PCIe
switch. We have performed ASIC synthesis in a previous project [6] and plan to follow a similar
methodology.

4.5 Beyond Accelerator Chaining
While our main goal in this project is to implement accelerator chaining, a programmable host
interconnect enables many useful capabilities that extend beyond more efficient accelerator
communication. In particular, the same programmable architecture can also be deployed in the
PCIe root complex; this enables low-latency access to host memory and allows us to implement
dataplane functionality interposed between the CPU and other devices (e.g., policies [84]).

21



Data push from CPU: Having programmability on the PCIe root complex also allows us to
expose the data push primitive to the CPU itself. One of the reasons for the many round trips
required by existing accelerator interfaces (e.g., Table 2) is that it is expensive for the CPU to
push data to devices using MMIO writes. As a result, the software running on the CPU usually
sends an MMIO write to inform the device that there are data available (doorbell). The device
then needs to explicitly pull the data using a DMA read. By implementing our programmable
architecture in the PCIe root complex, we can have the fabric itself send the data to the devices
in response to an MMIO write, reducing latency without adding CPU overhead. In addition,
the same push primitive can be used for efficient data copies, even when both the source and
destination addresses reside in host memory.
Interposed dataplane policies: The fact that the PCIe fabric interposes between every ac-
celerator allows us to implement policies such as access control efficiently. An operator may
restrict which devices are reachable from each other. For instance, an operator may not want a
particular device to be able to access the network or a storage device. Being able to implement
these kinds of policies in the host dataplane also simplifies manageability as it is easier to reason
about compared to enforcing the same policies from the devices themselves.

22



5 Thesis Timeline

Semester Plan

Spring 2024 • Thesis proposal.
• Complete speaking and writing skills.
• Finish implementing Nagare in simulation.

Summer 2024 • Finish implementing Nagare in RTL.
• Submit Nagare short paper to HotNets ’24.
• Nagare experiments.

Fall 2024 • Paper writing.
• Submit Nagare to OSDI ’25.

Spring 2025 • Work on camera ready or resubmission to SOSP ’25.
Summer 2025 • Thesis writing.

• Thesis defense.

Table 4: Proposed timeline to finish thesis.

23



References
[1] Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren, Max Baker, Tom

Hawkins, Andrew Bell, John Thompson, Temesghen Kahsai, Garrin Kimmell, Jennifer
Hwang, Rebekah Leslie-Hurd, Michael Bye, E. R. Creswick, Matthew Boyd, Mahitha Veni-
galla, Evan Laforge, Jon Purdy, Purushotham Kamath, Dinesh Maheshwari, Michael Bei-
dler, Geert Rosseel, Omar Ahmad, Gleb Gagarin, Richard Czekalski, Ashay Rane, Sahil
Parmar, Jeff Werner, Jim Sproch, Adrian Macias, and Brian Kurtz. Think fast: A tensor
streaming processor (TSP) for accelerating deep learning workloads. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture, ISCA ’20, pages
145–158, Virtual Event, 2020. IEEE Press. ISBN 978-1-72814-661-4. §1

[2] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref, Khaled Elmele-
egy, Luigi Rizzo, Marc Asher de Kruijf, Gautam Kumar, Sylvia Ratnasamy, David Culler,
and Amin Vahdat. Understanding host interconnect congestion. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks, HotNets ’22, pages 198–204, New York, NY,
USA, 2022. ISBN 978-1-4503-9899-2. §3.1.2

[3] Amazon. DPDK driver for elastic network adapter (ENA). https://github.com
/amzn/amzn-drivers/tree/master/userspace/dpdk, 2022. §3.1

[4] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, David
Walker, and David Wentzlaff. Enabling programmable transport protocols in high-speed
NICs. In 17th USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’20, pages 93–109, Santa Clara, CA, February 2020. ISBN 978-1-939133-13-7. §1 ,
§3

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Work-
load analysis of a large-scale key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference onMeasurement andModeling of Com-
puter Systems, SIGMETRICS ’12, pages 53–64, New York, NY, USA, 2012. ISBN 978-1-4503-
1097-0. §3 , §3.1.2

[6] Nirav Atre, Hugo Sadok, and Justine Sherry. BBQ: A fast and scalable integer priority
queue for hardware packet scheduling. In 21st USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’24, Santa Clara, CA, April 2024. USENIX Association.
§4.4

[7] AWS. What is Amazon CloudWatch Logs?, 2022. https://docs.aws.amazon.
com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html. §3
, §3.3.3

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. IX: A protected dataplane operating system for high throughput and
low latency. In 11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, pages 49–65, Broomfield, CO, October 2014. ISBN 978-1-931971-16-4. §3.4

[9] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy
Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and Gregory R.

24

https://github.com/amzn/amzn-drivers/tree/master/userspace/dpdk
https://github.com/amzn/amzn-drivers/tree/master/userspace/dpdk
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html


Ganger. The CacheLib caching engine: Design and experiences at scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’20, pages 753–768,
November 2020. ISBN 978-1-939133-19-9. §3

[10] Corinne Bernstein. What is ISA (industry standard architecture)?, 2024. https://www
.techtarget.com/searchwindowsserver/definition/ISA-Industry
-Standard-Architecture. §1

[11] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard,
Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 99–110, New York, NY, USA, 2013. ISBN
978-1-4503-2056-6. §4.3

[12] S. Bradner and J. McQuaid. Benchmarking methodology for network interconnect devices.
RFC 2544, March 1999. URL https://www.rfc-editor.org/info/rfc2544.
§3.3.1

[13] Broadcom. BNXT poll mode driver. https://doc.dpdk.org/guides/nics
/bnxt.html, 2022. §3.1

[14] Jeff Bush et al. Nyuzi Processor, 2024. https://github.com/jbush001/Nyuzi
Processor. §4.4

[15] CAIDA. Anonymized internet traces 2016. https://catalog.caida.org/
dataset/passive_2016_pcap, 2016. §3.2

[16] cocotb. cocotb | Python verification framework, 2024. https://www.cocotb.org/.
§4.4

[17] Chelsio Communications. Terminator 5 ASIC, 2021. https://www.chelsio.com
/terminator-5-asic/. §1 , §3

[18] Jonathan Corbet. Ringing in a new asynchronous I/O API, 2019. https://lwn.net
/Articles/776703/. §3.1

[19] Roman Dementiev et al. Processor Counter Monitor (PCM), 2022. https://github
.com/opcm/pcm. §3.3.1

[20] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gianluca
Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. RouteBricks: Exploiting
parallelism to scale software routers. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, pages 15–28, New York, NY, USA, 2009. ISBN
978-1-60558-752-3. §3.1.2

[21] DPDK. Data Plane Development Kit, 2022. https://dpdk.org. §3 , §3.1
[22] DPDK. NVIDIA MLX5 ethernet driver, 2022. https://doc.dpdk.org/guides/

nics/mlx5.html. §1 , §3 , §3.4
[23] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. FaRM:

Fast remote memory. In 11th USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI ’14, pages 401–414, Seattle, WA, April 2014. ISBN 978-1-931971-09-6.
§3.4

25

https://www.techtarget.com/searchwindowsserver/definition/ISA-Industry-Standard-Architecture
https://www.techtarget.com/searchwindowsserver/definition/ISA-Industry-Standard-Architecture
https://www.techtarget.com/searchwindowsserver/definition/ISA-Industry-Standard-Architecture
https://www.rfc-editor.org/info/rfc2544
https://doc.dpdk.org/guides/nics/bnxt.html
https://doc.dpdk.org/guides/nics/bnxt.html
https://github.com/jbush001/NyuziProcessor
https://github.com/jbush001/NyuziProcessor
https://catalog.caida.org/dataset/passive_2016_pcap
https://catalog.caida.org/dataset/passive_2016_pcap
https://www.cocotb.org/
https://www.chelsio.com/terminator-5-asic/
https://www.chelsio.com/terminator-5-asic/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://dpdk.org
https://doc.dpdk.org/guides/nics/mlx5.html
https://doc.dpdk.org/guides/nics/mlx5.html


[24] Peter Druschel, Larry L. Peterson, and Bruce S. Davie. Experiences with a high-speed
network adaptor: A software perspective. In Proceedings of the Conference on Communica-
tions Architectures, Protocols and Applications, SIGCOMM ’94, pages 2–13, New York, NY,
USA, 1994. ISBN 0-89791-682-4. §1 , §3.4

[25] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-
Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein.
Maglev: A fast and reliable software network load balancer. In 13th USENIX Symposium
on Networked Systems Design and Implementation, NSDI ’16, pages 523–535, Santa Clara,
CA, March 2016. ISBN 978-1-931971-29-4. §3 , §3.3.3

[26] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg
Carle. MoonGen: A scriptable high-speed packet generator. In Proceedings of the 2015
Internet Measurement Conference, IMC ’15, pages 275–287, New York, NY, USA, 2015. ISBN
978-1-4503-3848-6. §3.3.1

[27] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An operating system architecture
for application-level resource management. In Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’95, pages 251–266, New York, NY, USA, 1995.
ISBN 0-89791-715-4. §3.4

[28] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. NICA: An infras-
tructure for inline acceleration of network applications. In 2019 USENIX Annual Technical
Conference, ATC ’19, pages 345–362, Renton, WA, July 2019. ISBN 978-1-939133-03-8. §1 ,
§3 , §3.4

[29] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Har-
ish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre,
Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma,
Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert
Greenberg. Azure accelerated networking: SmartNICs in the public cloud. In 15th USENIX
Symposium on Networked Systems Design and Implementation, NSDI ’18, pages 51–66, Ren-
ton, WA, April 2018. ISBN 978-1-939133-01-4. §3.1.1

[30] Mario Flajslik and Mendel Rosenblum. Network interface design for low latency request-
response protocols. In 2013 USENIX Annual Technical Conference, ATC ’13, pages 333–346,
San Jose, CA, June 2013. ISBN 978-1-931971-01-0. §3.4

[31] Alex Forencich. PCI express simulation framework for Cocotb, 2024. https://github
.com/alexforencich/cocotbext-pcie. §4.4

[32] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. Corundum: An
open-source 100-Gbps NIC. In 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM ’20, pages 38–46. IEEE, 2020. ISBN
978-1-72815-803-7. §4.4

[33] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03,

26

https://github.com/alexforencich/cocotbext-pcie
https://github.com/alexforencich/cocotbext-pcie


pages 29–43, New York, NY, USA, 2003. ISBN 1-58113-757-5. §3
[34] Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu, Sagar

Karandikar, Jichuan Chang, Krste Asanovic, and Parthasarathy Ranganathan. Profiling
hyperscale big data processing. In Proceedings of the 50th Annual International Symposium
on Computer Architecture, ISCA ’23, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400700958. §1

[35] PCI Special Interest Group. PCI Local Bus Specification (Revision 2.2). Technical report,
PCI Special Interest Group, December 1998. §1

[36] PCI Special Interest Group. PCI Express Base Specification Revision 1.0. Technical report,
PCI Special Interest Group, April 2002. §1

[37] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia Rat-
nasamy. SoftNIC: A software NIC to augment hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of California, Berkeley, May 2015. §3.1.1 , §3.2

[38] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend, Tom
Herbert, David Ahern, and David Miller. The EXpress data path: Fast programmable
packet processing in the operating system kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’18, pages
54–66, New York, NY, USA, 2018. ISBN 978-1-4503-6080-7. §3.4

[39] Wentao Hou, Jie Zhang, Zeke Wang, and Ming Liu. Understanding routable PCIe perfor-
mance for composable infrastructures. In 21st USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’24, Santa Clara, CA, April 2024. USENIX Association.
§4.3

[40] Intel. Intel data direct I/O technology (Intel DDIO): A primer. Technical report, Intel,
February 2012. §3.1.2

[41] Intel. Intel Ethernet Controller E810. Technical Report 613875-006, Intel, March 2022. §1
, §3 , §3.1 , §3.1.1

[42] Intel. Intel Ethernet Network Adapter E810-CQDA2, 2022. https://ark.intel
.com/content/www/us/en/ark/products/210969/intel-ethernet
-network-adapter-e8102cqda2.html. §3.3.1

[43] Intel. Intel Core i7-7820X X-series Processor, 2022. https://ark.intel.com
/content/www/us/en/ark/products/123767/intel-core-i77820x
-xseries-processor-11m-cache-up-to-4-30-ghz.html. §3.3.1

[44] Intel. Intel Core i9-9960X X-series Processor, 2022. https://ark.intel.com
/content/www/us/en/ark/products/189123/intel-core-i99960x
-xseries-processor-22m-cache-up-to-4-50-ghz.html. §3.3.1

[45] Intel. Intel infrastructure processing unit (Intel IPU) platform (codename: Oak Springs
Canyon), 2022. https://www.intel.com/content/www/us/en/products/
platforms/details/oak-springs-canyon.html. §1

[46] Intel. Intel Stratix 10 MX 2100 FPGA, 2022. https://ark.intel.com/content
/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga

27

https://ark.intel.com/content/www/us/en/ark/products/210969/intel-ethernet-network-adapter-e8102cqda2.html
https://ark.intel.com/content/www/us/en/ark/products/210969/intel-ethernet-network-adapter-e8102cqda2.html
https://ark.intel.com/content/www/us/en/ark/products/210969/intel-ethernet-network-adapter-e8102cqda2.html
https://ark.intel.com/content/www/us/en/ark/products/123767/intel-core-i77820x-xseries-processor-11m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123767/intel-core-i77820x-xseries-processor-11m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123767/intel-core-i77820x-xseries-processor-11m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/189123/intel-core-i99960x-xseries-processor-22m-cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/189123/intel-core-i99960x-xseries-processor-22m-cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/189123/intel-core-i99960x-xseries-processor-22m-cache-up-to-4-50-ghz.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html


.html. §3.3.1
[47] Intel. Top-down microarchitecture analysis method. https://www.intel.com

/content/www/us/en/develop/documentation/vtune-cookbook/top
/methodologies/top-down-microarchitecture-analysis-method
.html, 2022. §3.1.2

[48] Intel. Intel QuickAssist Adapter Family for Servers, 2024. https://www.intel
.com/content/www/us/en/products/docs/network-io/ethernet
/10-25-40-gigabit-adapters/quickassist-adapter-for-servers
.html. §1 , §2.1 , §4.1

[49] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin, Tae Jun Ham, and
Jae W. Lee. A specialized architecture for object serialization with applications to big
data analytics. In Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture, ISCA ’20, pages 322–334, Virtual Event, 2020. IEEE Press. ISBN
978-1-72814-661-4. §3

[50] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware switching layer for
data centers. In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communica-
tion, SIGCOMM ’08, pages 51–62, New York, NY, USA, 2008. Association for Computing
Machinery. ISBN 978-1-60558-175-0. §4.3

[51] Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. A domain-specific
architecture for deep neural networks. Communications of the ACM, 61(9):50–59, aug 2018.
ISSN 0001-0782. doi: 10.1145/3154484. §1 , §4.1

[52] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be general
and fast. In 16th USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’19, pages 1–16, Boston, MA, February 2019. ISBN 978-1-931971-49-2. §3.4

[53] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture, ISCA ’15,
pages 158–169, New York, NY, USA, 2015. ISBN 978-1-4503-3402-0. §3

[54] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi, Borivoje
Nikolic, Krste Asanovic, and Parthasarathy Ranganathan. A hardware accelerator for
protocol buffers. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’21, pages 462–478, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 978-1-4503-8557-2. §1 , §4.4

[55] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Anderson, and Arvind Kr-
ishnamurthy. High performance packet processing with FlexNIC. In Proceedings of the
Twenty-First International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, pages 67–81, New York, NY, USA, 2016. ISBN 978-1-
4503-4091-5. §3.4

[56] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krishnamurthy,
and Thomas Anderson. TAS: TCP acceleration as an OS service. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019. ISBN 978-1-

28

https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html


4503-6281-8. §3.4
[57] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA: A holis-

tic approach to fast in-memory key-value storage. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’14, pages 429–444, Seattle, WA, April
2014. ISBN 978-1-931971-09-6. §3 , §3.1.2 , §3.3.1 , §3.3.3

[58] Linux RDMA. RDMA core userspace libraries and daemons, 2022. https://github
.com/linux-rdma/rdma-core. §3.4

[59] Guyue Liu, Hugo Sadok, Anne Kohlbrenner, Bryan Parno, Vyas Sekar, and Justine Sherry.
Don’t yank my chain: Auditable NF service chaining. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’21, pages 155–173, Boston, MA, April
2021. USENIX Association. ISBN 978-1-939133-21-2. §4.3

[60] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy Fried-
man, and Vyas Sekar. NitroSketch: Robust and general sketch-based monitoring in soft-
ware switches. In Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, pages 334–350, New York, NY, USA, 2019. ISBN 978-1-4503-5956-6. §3 ,
§3.3.3

[61] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, and Justine Sherry. Contention-
aware performance prediction for virtualized network functions. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication, SIG-
COMM ’20, pages 270–282, New York, NY, USA, 2020. ISBN 978-1-4503-7955-7. §3.1.2

[62] Marvell. DPDK marvell. https://github.com/MarvellEmbedded
Processors/marvell-dpdk, 2024. §3.1

[63] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya Gu-
nasekar, Jimmy Lu, Daniel S. Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Caching billions of tiny objects on flash. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21, pages 243–262, New York, NY, USA,
2021. ISBN 978-1-4503-8709-5. §3

[64] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang Cheng, Jiaqi
Gao, Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi, Binzhang Fu, Jiaji Zhu, Jiesheng
Wu, Dennis Cai, and Hongqiang Harry Liu. From luna to solar: The evolutions of the
compute-to-storage networks in Alibaba Cloud. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, pages 753–766, New York, NY, USA, 2022. ISBN 978-1-
4503-9420-8. §3

[65] Al Morton. RFC Errata, Erratum ID 412, RFC 2544, November 2006. https://www.rfc
-editor.org/errata/eid422. §3.3.1

[66] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio López-
Buedo, and Andrew W. Moore. Understanding PCIe performance for end host networking.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, pages 327–341, New York, NY, USA, 2018. ISBN 978-1-4503-5567-4.
§3.1.2

29

https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://github.com/MarvellEmbeddedProcessors/marvell-dpdk
https://github.com/MarvellEmbeddedProcessors/marvell-dpdk
https://www.rfc-editor.org/errata/eid422
https://www.rfc-editor.org/errata/eid422


[67] Nvdia. Nvidia Mellanox Innova-2 Flex open adapter card, 2024. https://docs
.nvidia.com/networking/display/innova2flex. §1

[68] Nvdia. Nvidia deep learning accelerator, 2024. http://nvdla.org/. §4.4
[69] Nvidia. GPUDirect, 2024. https://developer.nvidia.com/gpudirect. §4
[70] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Ratnasamy,

Luigi Rizzo, and Scott Shenker. E2: A framework for NFV applications. In Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 121–136, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 978-1-4503-3834-9. §4.3

[71] Pensando. Pensando DSC-100 distributed services card. Technical Report PPB19002. Rev
6, Pensando, 2021. §1

[72] Perf. perf: Linux profiling with performance counters, 2022. https://perf.wiki
.kernel.org. §3.3.1

[73] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy,
Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system is the con-
trol plane. In 11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, pages 1–16, Broomfield, CO, October 2014. ISBN 978-1-931971-16-4. §3.4

[74] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme,
Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and Martin Casado. The
design and implementation of Open vSwitch. In 12th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’15, pages 117–130, Oakland, CA, May 2015.
ISBN 978-1-931971-21-8. §3.1.1 , §3.2

[75] Matt Pharr and Randima Fernando, editors. GPU Gems 2: Programming Techniques For
High-Performance Graphics And General-Purpose Computation. Addison-Wesley Profes-
sional, hardcover edition, 2005. ISBN 978-0321335593. §1

[76] Solal Pirelli and George Candea. A simpler and faster NIC driver model for network
functions. In 14th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’20, pages 225–241, November 2020. ISBN 978-1-939133-19-9. §3.1 , §3.4

[77] Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. The benefits of general-
purpose on-NIC memory. In Proceedings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’22, New
York, NY, USA, 2022. §3.4

[78] Boris Pismenny, Adam Morrison, and Dan Tsafrir. ShRing: Networking with shared re-
ceive rings. In 17th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’23, Boston, MA, July 2023. §3.4

[79] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. Optimus prime: Accelerating
data transformation in servers. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20,
pages 1203–1216, New York, NY, USA, 2020. ISBN 978-1-4503-7102-5. §3

[80] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan Hadjis,

30

https://docs.nvidia.com/networking/display/innova2flex
https://docs.nvidia.com/networking/display/innova2flex
http://nvdla.org/
https://developer.nvidia.com/gpudirect
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org


Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Plasticine: A reconfigurable
architecture for parallel paterns. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, pages 389–402, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 978-1-4503-4892-8. §1

[81] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray,
Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram
Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao,
and Doug Burger. A reconfigurable fabric for accelerating large-scale datacenter services.
In Proceeding of the 41st Annual International Symposium on Computer Architecuture, ISCA
’14, pages 13–24, Minneapolis, Minnesota, USA, 2014. IEEE Press. ISBN 978-1-4799-4394-4.
§1

[82] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. Breakfast of champions:
Towards zero-copy serialization with NIC scatter-gather. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’21, pages 199–205, New York, NY, USA, 2021.
ISBN 978-1-4503-8438-4. §3

[83] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In 2012 USENIX Annual
Technical Conference, ATC ’12, pages 101–112, Boston, MA, 2012. ISBN 978-931971-93-5.
§3.1 , §3.4

[84] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S. Berger, James C. Hoe,
Aurojit Panda, and Justine Sherry. We need kernel interposition over the network data-
plane. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’21, pages
152–158, New York, NY, USA, 2021. ISBN 978-1-4503-8438-4. §3.4 , §4.5

[85] Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S. Berger, James C. Hoe, Aurojit Panda,
Justine Sherry, and Ren Wang. Ensō: A streaming interface for NIC-application commu-
nication. In 17th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’23, pages 1005–1025, Boston, MA, July 2023. USENIX Association. ISBN 978-1-
939133-34-2. §3.3 , §4.4

[86] Hugo Sadok, Aurojit Panda, and Justine Sherry. Of apples and oranges: Fair comparisons
in heterogenous systems evaluation. In Proceedings of the 22nd ACM Workshop on Hot
Topics in Networks, HotNets ’23, pages 1–8, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400704154. §4.4

[87] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. FlexTOE: Flexible
TCP offload with fine-grained parallelism. In 19th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI ’22, pages 87–102, Renton, WA, April 2022. ISBN
978-1-939133-27-4. §1 , §3

[88] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Understanding acceleration
opportunities for data center overheads at hyperscale. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, pages 733–750, New York, NY, USA, 2020. ISBN 978-1-4503-7102-5.
§1

31



[89] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Edward D. Lazowska. Im-
plementing network protocols at user level. In Conference Proceedings on Communications
Architectures, Protocols and Applications, SIGCOMM ’93, pages 64–73, New York, NY, USA,
1993. ISBN 0-89791-619-0. §3.4

[90] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argyraki, Sylvia
Ratnasamy, and Scott Shenker. ResQ: Enabling SLOs in network function virtualization.
In 15th USENIX Symposium on Networked Systems Design and Implementation, NSDI ’18,
pages 283–297, Renton, WA, April 2018. ISBN 978-1-939133-01-4. §3.1.2 , §3.4

[91] Amy Viviano. Introduction to receive side scaling, 2022. https://docs.microsoft
.com/en-us/windows-hardware/drivers/network/introduction-to
-receive-side-scaling. §3.1.1

[92] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A user-level
network interface for parallel and distributed computing. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP ’95, pages 40–53, New York, NY,
USA, 1995. ISBN 0-89791-715-4. §3.4

[93] Keith Wiles et al. The Pktgen application, 2022. https://pktgen-dpdk.
readthedocs.io/. §3.3.1

[94] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon Kim, Rajit Manohar, and
Robert Soulé. Zerializer: Towards zero-copy serialization. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’21, pages 206–212, New York, NY, USA, 2021.
ISBN 978-1-4503-8438-4. §3

[95] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. StackMap: Low-
latency networking with the OS stack and dedicated NICs. In 2016 USENIX Annual Tech-
nical Conference, ATC ’16, pages 43–56, Denver, CO, June 2016. ISBN 978-1-931971-30-0.
§3.4

[96] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar
S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar, Pe-
dro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. The demik-
ernel datapath OS architecture for microsecond-scale datacenter systems. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, pages 195–
211, New York, NY, USA, 2021. ISBN 978-1-4503-8709-5. §3 , §3.4

[97] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin Shen, and Xin Long. High-
density multi-tenant bare-metal cloud. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, pages 483–495, New York, NY, USA, 2020. ISBN 978-1-4503-7102-5. §3

32

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://pktgen-dpdk.readthedocs.io/
https://pktgen-dpdk.readthedocs.io/

	1 Introduction
	1.1 Outline

	2 Background and Motivation
	2.1 Existing Accelerator Interface
	2.2 Mismatch Between Devices' Interface and Usage

	3 Ensō: A Streaming Interface for NIC-Application Communication
	3.1 Background and Motivation
	3.1.1 Packetized NIC Interface
	3.1.2 Issues with a Packetized Interface

	3.2 Ensō Overview
	3.3 Evaluation Summary
	3.3.1 Setup and Methodology
	3.3.2 Microbenchmarks
	3.3.3 Application Benchmarks

	3.4 Related Work

	4 Nagare: A Programmable Host Interconnect (Proposed Work)
	4.1 Motivating Example: Accelerator Chain
	4.2 Challenges Preventing Direct Communication Between Devices
	4.3 Achieving Streaming Through a Programmable Host Interconnect
	4.4 Evaluation Plan
	4.5 Beyond Accelerator Chaining

	5 Thesis Timeline

